BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 18781687)

  • 1. Kinetic modeling of cellulosic biomass to ethanol via simultaneous saccharification and fermentation: Part I. Accommodation of intermittent feeding and analysis of staged reactors.
    Shao X; Lynd L; Wyman C; Bakker A
    Biotechnol Bioeng; 2009 Jan; 102(1):59-65. PubMed ID: 18781687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic modeling of cellulosic biomass to ethanol via simultaneous saccharification and fermentation: Part II. Experimental validation using waste paper sludge and anticipation of CFD analysis.
    Shao X; Lynd L; Wyman C
    Biotechnol Bioeng; 2009 Jan; 102(1):66-72. PubMed ID: 18781686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol.
    Wu A; Lee YY
    Appl Biochem Biotechnol; 1998; 70-72():479-92. PubMed ID: 9627393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactor scale up for biological conversion of cellulosic biomass to ethanol.
    Shao X; Lynd L; Bakker A; LaRoche R; Wyman C
    Bioprocess Biosyst Eng; 2010 May; 33(4):485-93. PubMed ID: 19649658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The operable modeling of simultaneous saccharification and fermentation of ethanol production from cellulose.
    Shen J; Agblevor FA
    Appl Biochem Biotechnol; 2010 Mar; 160(3):665-81. PubMed ID: 19412687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical engineering analysis of critical process factors in the biomass-to-ethanol technology.
    Philippidis GP; Hatzis C
    Biotechnol Prog; 1997; 13(3):222-31. PubMed ID: 9190073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic model-based evaluation of process configurations for integrated operation of hydrolysis and co-fermentation for bioethanol production from lignocellulose.
    Morales-Rodriguez R; Meyer AS; Gernaey KV; Sin G
    Bioresour Technol; 2011 Jan; 102(2):1174-84. PubMed ID: 20961753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquefaction of lignocellulose at high-solids concentrations.
    Jørgensen H; Vibe-Pedersen J; Larsen J; Felby C
    Biotechnol Bioeng; 2007 Apr; 96(5):862-70. PubMed ID: 16865734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):407-25. PubMed ID: 20172020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production.
    Doran-Peterson J; Jangid A; Brandon SK; DeCrescenzo-Henriksen E; Dien B; Ingram LO
    Methods Mol Biol; 2009; 581():263-80. PubMed ID: 19768628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process.
    Philippidis GP; Smith TK; Wyman CE
    Biotechnol Bioeng; 1993 Apr; 41(9):846-53. PubMed ID: 18609632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-based fed-batch for high-solids enzymatic cellulose hydrolysis.
    Hodge DB; Karim MN; Schell DJ; McMillan JD
    Appl Biochem Biotechnol; 2009 Jan; 152(1):88-107. PubMed ID: 18512162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the performance of a continuous process for the production of ethanol from starch.
    Trovati J; Giordano RC; Giordano RL
    Appl Biochem Biotechnol; 2009 May; 156(1-3):76-90. PubMed ID: 19240991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass.
    Weimer PJ; Russell JB; Muck RE
    Bioresour Technol; 2009 Nov; 100(21):5323-31. PubMed ID: 19560344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol fermentation from biomass resources: current state and prospects.
    Lin Y; Tanaka S
    Appl Microbiol Biotechnol; 2006 Feb; 69(6):627-42. PubMed ID: 16331454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol.
    Wu Z; Lee YY
    Appl Biochem Biotechnol; 1998; 70-72():479-92. PubMed ID: 18576014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.
    Ou MS; Mohammed N; Ingram LO; Shanmugam KT
    Appl Biochem Biotechnol; 2009 May; 155(1-3):379-85. PubMed ID: 19156365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222--Part I: kinetic modeling and parameters.
    Zhang J; Shao X; Townsend OV; Lynd LR
    Biotechnol Bioeng; 2009 Dec; 104(5):920-31. PubMed ID: 19575439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol production from biomass by repetitive solid-state fed-batch fermentation with continuous recovery of ethanol.
    Moukamnerd C; Kino-oka M; Sugiyama M; Kaneko Y; Boonchird C; Harashima S; Noda H; Ninomiya K; Shioya S; Katakura Y
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):87-94. PubMed ID: 20577734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.