These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine. Sun R; Zheng H; Fang Z; Yao W Biochem Biophys Res Commun; 2010 Jan; 391(1):709-15. PubMed ID: 19944076 [TBL] [Abstract][Full Text] [Related]
3. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites. Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204 [TBL] [Abstract][Full Text] [Related]
4. Expanding the genetic code of Escherichia coli. Wang L; Brock A; Herberich B; Schultz PG Science; 2001 Apr; 292(5516):498-500. PubMed ID: 11313494 [TBL] [Abstract][Full Text] [Related]
5. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Ryu Y; Schultz PG Nat Methods; 2006 Apr; 3(4):263-5. PubMed ID: 16554830 [TBL] [Abstract][Full Text] [Related]
6. The genetic incorporation of a distance probe into proteins in Escherichia coli. Tsao ML; Summerer D; Ryu Y; Schultz PG J Am Chem Soc; 2006 Apr; 128(14):4572-3. PubMed ID: 16594684 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of 3-azidotyrosine into proteins through engineering yeast tyrosyl-tRNA synthetase and its application to site-selective protein modification. Yokogawa T; Ohno S; Nishikawa K Methods Mol Biol; 2010; 607():227-42. PubMed ID: 20204861 [TBL] [Abstract][Full Text] [Related]
8. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. Chin JW; Santoro SW; Martin AB; King DS; Wang L; Schultz PG J Am Chem Soc; 2002 Aug; 124(31):9026-7. PubMed ID: 12148987 [TBL] [Abstract][Full Text] [Related]
9. Site-selective post-translational modification of proteins using an unnatural amino acid, 3-azidotyrosine. Ohno S; Matsui M; Yokogawa T; Nakamura M; Hosoya T; Hiramatsu T; Suzuki M; Hayashi N; Nishikawa K J Biochem; 2007 Mar; 141(3):335-43. PubMed ID: 17202192 [TBL] [Abstract][Full Text] [Related]
10. Site-specific incorporation of unnatural amino acids into proteins by cell-free protein synthesis. Ozawa K; Loh CT Methods Mol Biol; 2014; 1118():189-203. PubMed ID: 24395417 [TBL] [Abstract][Full Text] [Related]
11. Site-specific incorporation of p-propargyloxyphenylalanine in a cell-free environment for direct protein-protein click conjugation. Bundy BC; Swartz JR Bioconjug Chem; 2010 Feb; 21(2):255-63. PubMed ID: 20099875 [TBL] [Abstract][Full Text] [Related]
12. Genetically encoded initiator for polymer growth from proteins. Peeler JC; Woodman BF; Averick S; Miyake-Stoner SJ; Stokes AL; Hess KR; Matyjaszewski K; Mehl RA J Am Chem Soc; 2010 Oct; 132(39):13575-7. PubMed ID: 20839808 [TBL] [Abstract][Full Text] [Related]
13. Functional replacement of the endogenous tyrosyl-tRNA synthetase-tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion. Iraha F; Oki K; Kobayashi T; Ohno S; Yokogawa T; Nishikawa K; Yokoyama S; Sakamoto K Nucleic Acids Res; 2010 Jun; 38(11):3682-91. PubMed ID: 20159998 [TBL] [Abstract][Full Text] [Related]
14. A new strategy for the site-specific modification of proteins in vivo. Zhang Z; Smith BA; Wang L; Brock A; Cho C; Schultz PG Biochemistry; 2003 Jun; 42(22):6735-46. PubMed ID: 12779328 [TBL] [Abstract][Full Text] [Related]
15. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting. Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025 [TBL] [Abstract][Full Text] [Related]
16. Amersham Prize winner. Expanding the genetic code. Wang L Science; 2003 Oct; 302(5645):584-5. PubMed ID: 14576413 [No Abstract] [Full Text] [Related]
17. A new protein engineering approach combining chemistry and biology, part I; site-specific incorporation of 4-iodo-L-phenylalanine in vitro by using misacylated suppressor tRNAPhe. Kodama K; Fukuzawa S; Sakamoto K; Nakayama H; Kigawa T; Yabuki T; Matsuda N; Shirouzu M; Takio K; Tachibana K; Yokoyama S Chembiochem; 2006 Oct; 7(10):1577-81. PubMed ID: 16969782 [TBL] [Abstract][Full Text] [Related]
18. An expanded genetic code with a functional quadruplet codon. Anderson JC; Wu N; Santoro SW; Lakshman V; King DS; Schultz PG Proc Natl Acad Sci U S A; 2004 May; 101(20):7566-71. PubMed ID: 15138302 [TBL] [Abstract][Full Text] [Related]
19. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Kobayashi T; Nureki O; Ishitani R; Yaremchuk A; Tukalo M; Cusack S; Sakamoto K; Yokoyama S Nat Struct Biol; 2003 Jun; 10(6):425-32. PubMed ID: 12754495 [TBL] [Abstract][Full Text] [Related]
20. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence. Fukunaga J; Yokogawa T; Ohno S; Nishikawa K J Biochem; 2006 Apr; 139(4):689-96. PubMed ID: 16672269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]