BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

739 related articles for article (PubMed ID: 18781690)

  • 1. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment.
    Donohoe BS; Decker SR; Tucker MP; Himmel ME; Vinzant TB
    Biotechnol Bioeng; 2008 Dec; 101(5):913-25. PubMed ID: 18781690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redistribution of xylan in maize cell walls during dilute acid pretreatment.
    Brunecky R; Vinzant TB; Porter SE; Donohoe BS; Johnson DK; Himmel ME
    Biotechnol Bioeng; 2009 Apr; 102(6):1537-43. PubMed ID: 19161247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose.
    Selig MJ; Viamajala S; Decker SR; Tucker MP; Himmel ME; Vinzant TB
    Biotechnol Prog; 2007; 23(6):1333-9. PubMed ID: 17973399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin.
    Nakagame S; Chandra RP; Kadla JF; Saddler JN
    Biotechnol Bioeng; 2011 Mar; 108(3):538-48. PubMed ID: 21246506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy.
    Donohoe BS; Selig MJ; Viamajala S; Vinzant TB; Adney WS; Himmel ME
    Biotechnol Bioeng; 2009 Jun; 103(3):480-9. PubMed ID: 19266575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.
    Kumar R; Mago G; Balan V; Wyman CE
    Bioresour Technol; 2009 Sep; 100(17):3948-62. PubMed ID: 19362819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In search of a maize ideotype for cell wall enzymatic degradability using histological and biochemical lignin characterization.
    Méchin V; Argillier O; Rocher F; Hébert Y; Mila I; Pollet B; Barriére Y; Lapierre C
    J Agric Food Chem; 2005 Jul; 53(15):5872-81. PubMed ID: 16028968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis.
    Nakagame S; Chandra RP; Saddler JN
    Biotechnol Bioeng; 2010 Apr; 105(5):871-9. PubMed ID: 19998278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment.
    Liu L; Sun J; Li M; Wang S; Pei H; Zhang J
    Bioresour Technol; 2009 Dec; 100(23):5853-8. PubMed ID: 19581085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of surfactants on pretreatment of corn stover.
    Qing Q; Yang B; Wyman CE
    Bioresour Technol; 2010 Aug; 101(15):5941-51. PubMed ID: 20304637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2004 Apr; 86(1):88-95. PubMed ID: 15007845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breakdown of cell wall nanostructure in dilute acid pretreated biomass.
    Pingali SV; Urban VS; Heller WT; McGaughey J; O'Neill H; Foston M; Myles DA; Ragauskas A; Evans BR
    Biomacromolecules; 2010 Sep; 11(9):2329-35. PubMed ID: 20726544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes.
    Selig MJ; Vinzant TB; Himmel ME; Decker SR
    Appl Biochem Biotechnol; 2009 May; 155(1-3):397-406. PubMed ID: 19214798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deconstruction of lignocellulosic biomass to fuels and chemicals.
    Chundawat SP; Beckham GT; Himmel ME; Dale BE
    Annu Rev Chem Biomol Eng; 2011; 2():121-45. PubMed ID: 22432613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis.
    Hsu TC; Guo GL; Chen WH; Hwang WS
    Bioresour Technol; 2010 Jul; 101(13):4907-13. PubMed ID: 19926476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.
    Sills DL; Gossett JM
    Biotechnol Bioeng; 2012 Apr; 109(4):894-903. PubMed ID: 22094883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification.
    Li C; Knierim B; Manisseri C; Arora R; Scheller HV; Auer M; Vogel KP; Simmons BA; Singh S
    Bioresour Technol; 2010 Jul; 101(13):4900-6. PubMed ID: 19945861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cost reduction and feedstock diversity for sulfuric acid-free ethanol cooking of lignocellulosic biomass as a pretreatment to enzymatic saccharification.
    Teramoto Y; Lee SH; Endo T
    Bioresour Technol; 2009 Oct; 100(20):4783-9. PubMed ID: 19467864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of transgenic glycoside hydrolases expressed in plants: T. reesei CBH I and A. cellulolyticus EI.
    Brunecky R; Baker JO; Wei H; Taylor LE; Himmel ME; Decker SR
    Methods Mol Biol; 2012; 908():197-211. PubMed ID: 22843401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin modification improves fermentable sugar yields for biofuel production.
    Chen F; Dixon RA
    Nat Biotechnol; 2007 Jul; 25(7):759-61. PubMed ID: 17572667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.