BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18781837)

  • 1. Quantitative screening of engineered implants in a long bone defect model in rabbits.
    Bakker AD; Schrooten J; van Cleynenbreugel T; Vanlauwe J; Luyten J; Schepers E; Dubruel P; Schacht E; Lammens J; Luyten FP
    Tissue Eng Part C Methods; 2008 Sep; 14(3):251-60. PubMed ID: 18781837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repair of segmental long bone defect in a rabbit radius nonunion model: comparison of cylindrical porous titanium and hydroxyapatite scaffolds.
    Zhang M; Wang GL; Zhang HF; Hu XD; Shi XY; Li S; Lin W
    Artif Organs; 2014 Jun; 38(6):493-502. PubMed ID: 24372398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects.
    Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC
    Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Histological and biomechanical study of repairing rabbit radius segmental bone defect with porous titanium].
    Zhang HF; Zhao CY; Fan HS; Zhang H; Pei FX; Wang GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2011 Oct; 43(5):724-9. PubMed ID: 22008684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits.
    Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D
    J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS
    Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional bone response to commercially pure titanium, hydroxyapatite, and calcium-ion-mixing titanium in rabbits.
    Ichikawa T; Hanawa T; Ukai H; Murakami K
    Int J Oral Maxillofac Implants; 2000; 15(2):231-8. PubMed ID: 10795455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model.
    Haugen HJ; Monjo M; Rubert M; Verket A; Lyngstadaas SP; Ellingsen JE; Rønold HJ; Wohlfahrt JC
    Acta Biomater; 2013 Feb; 9(2):5390-9. PubMed ID: 22985740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering.
    Guo H; Su J; Wei J; Kong H; Liu C
    Acta Biomater; 2009 Jan; 5(1):268-78. PubMed ID: 18722167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering.
    Kim JY; Lee TJ; Cho DW; Kim BS
    J Biomater Sci Polym Ed; 2010; 21(6-7):951-62. PubMed ID: 20482995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering.
    Lopez-Heredia MA; Sohier J; Gaillard C; Quillard S; Dorget M; Layrolle P
    Biomaterials; 2008 Jun; 29(17):2608-15. PubMed ID: 18358527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds.
    Kong L; Gao Y; Cao W; Gong Y; Zhao N; Zhang X
    J Biomed Mater Res A; 2005 Nov; 75(2):275-82. PubMed ID: 16044404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study.
    Huang Y; He J; Gan L; Liu X; Wu Y; Wu F; Gu ZW
    Biomed Mater; 2014 Nov; 9(6):065007. PubMed ID: 25384201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenesis depending on geometry of porous hydroxyapatite scaffolds.
    Yoshikawa M; Tsuji N; Shimomura Y; Hayashi H; Ohgushi H
    Calcif Tissue Int; 2008 Aug; 83(2):139-45. PubMed ID: 18679740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and osteoconductivity of porous bioactive titanium.
    Takemoto M; Fujibayashi S; Neo M; Suzuki J; Kokubo T; Nakamura T
    Biomaterials; 2005 Oct; 26(30):6014-23. PubMed ID: 15885769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.