BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18781837)

  • 21. Use of a biomimetic strategy to engineer bone.
    Holy CE; Fialkov JA; Davies JE; Shoichet MS
    J Biomed Mater Res A; 2003 Jun; 65(4):447-53. PubMed ID: 12761834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of silk fibroin/hydroxyapatite composite co-cultured with rabbit bone-marrow stromal cells in the healing of a segmental bone defect.
    Wang G; Yang H; Li M; Lu S; Chen X; Cai X
    J Bone Joint Surg Br; 2010 Feb; 92(2):320-5. PubMed ID: 20130332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method.
    Ning C; Zhou Y
    Acta Biomater; 2008 Nov; 4(6):1944-52. PubMed ID: 18502711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study.
    Fayyazbakhsh F; Solati-Hashjin M; Keshtkar A; Shokrgozar MA; Dehghan MM; Larijani B
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():701-714. PubMed ID: 28482581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherulites for large bone tissue engineering in vivo. II. Construct large volume of bone grafts.
    Zhi W; Zhang C; Duan K; Li X; Qu S; Wang J; Zhu Z; Huang P; Xia T; Liao G; Weng J
    J Biomed Mater Res A; 2014 Aug; 102(8):2491-501. PubMed ID: 23946164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silk implants for the healing of critical size bone defects.
    Meinel L; Fajardo R; Hofmann S; Langer R; Chen J; Snyder B; Vunjak-Novakovic G; Kaplan D
    Bone; 2005 Nov; 37(5):688-98. PubMed ID: 16140599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.
    Park SA; Lee SH; Kim WD
    Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue engineering of bone: search for a better scaffold.
    Mastrogiacomo M; Muraglia A; Komlev V; Peyrin F; Rustichelli F; Crovace A; Cancedda R
    Orthod Craniofac Res; 2005 Nov; 8(4):277-84. PubMed ID: 16238608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone formation by mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles.
    Fischer EM; Layrolle P; Van Blitterswijk CA; De Bruijn JD
    Tissue Eng; 2003 Dec; 9(6):1179-88. PubMed ID: 14670105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo study on biocompatibility and bonding strength of hydroxyapatite-20vol%Ti composite with bone tissues in the rabbit.
    Chu CL; Xue XY; Zhu JC; Yin ZD
    Biomed Mater Eng; 2006; 16(3):203-13. PubMed ID: 16518019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration.
    Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC
    Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and in vivo evaluation of chitosan-hydroxyapatite bone scaffolds made by one step coprecipitation method.
    Danilchenko SN; Kalinkevich OV; Pogorelov MV; Kalinkevich AN; Sklyar AM; Kalinichenko TG; Ilyashenko VY; Starikov VV; Bumeyster VI; Sikora VZ; Sukhodub LF
    J Biomed Mater Res A; 2011 Mar; 96(4):639-47. PubMed ID: 21268238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiological evaluation of the effect of biphasic calcium phosphate scaffold (HA+TCP) with 5, 10 and 20 percentage of porosity on healing of segmental bone defect in rabbit radius.
    Farahpour MR; Sharifi D; B AA; Veshkini A; Soheil A
    Bratisl Lek Listy; 2012; 113(9):529-33. PubMed ID: 22979907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts.
    Strobel LA; Rath SN; Maier AK; Beier JP; Arkudas A; Greil P; Horch RE; Kneser U
    J Tissue Eng Regen Med; 2014 Mar; 8(3):176-85. PubMed ID: 22740314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.