BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 18782639)

  • 1. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study.
    Byss M; Elhottová D; Tříska J; Baldrian P
    Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil.
    García-Delgado C; Alfaro-Barta I; Eymar E
    J Hazard Mater; 2015 Mar; 285():259-66. PubMed ID: 25506817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobilizing agents enhance fungal degradation of polycyclic aromatic hydrocarbons and affect diversity of indigenous bacteria in soil.
    Leonardi V; Giubilei MA; Federici E; Spaccapelo R; Sasek V; Novotny C; Petruccioli M; D'Annibale A
    Biotechnol Bioeng; 2008 Oct; 101(2):273-85. PubMed ID: 18727031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil.
    Viñas M; Sabaté J; Espuny MJ; Solanas AM
    Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil.
    Bengtsson G; Törneman N; Yang X
    Environ Pollut; 2010 Sep; 158(9):2865-71. PubMed ID: 20630638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood.
    Covino S; Fabianová T; Křesinová Z; Čvančarová M; Burianová E; Filipová A; Vořísková J; Baldrian P; Cajthaml T
    J Hazard Mater; 2016 Jan; 301():17-26. PubMed ID: 26342147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycoremediation of PAH-contaminated soil.
    Bhatt M; Cajthaml T; Sasek V
    Folia Microbiol (Praha); 2002; 47(3):255-8. PubMed ID: 12094734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production.
    Hestbjerg H; Willumsen PA; Christensen M; Andersen O; Jacobsen CS
    Environ Toxicol Chem; 2003 Apr; 22(4):692-8. PubMed ID: 12685699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community.
    Simarro R; González N; Bautista LF; Molina MC
    J Hazard Mater; 2013 Nov; 262():158-67. PubMed ID: 24025312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Bioremediation of oil-polluted soil with an association including the fungus Pleurotus ostreatus and soil microflora].
    Pozdniakova NN; Nikitina VE; Turkovskaia OV
    Prikl Biokhim Mikrobiol; 2008; 44(1):69-75. PubMed ID: 18491600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial community changes during the bioremediation of creosote-contaminated soil.
    Grant RJ; Muckian LM; Clipson NJ; Doyle EM
    Lett Appl Microbiol; 2007 Mar; 44(3):293-300. PubMed ID: 17309507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioremediation of long-term PCB-contaminated soil by white-rot fungi.
    Stella T; Covino S; Čvančarová M; Filipová A; Petruccioli M; D'Annibale A; Cajthaml T
    J Hazard Mater; 2017 Feb; 324(Pt B):701-710. PubMed ID: 27894756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosote-polluted soil.
    Törneman N; Yang X; Bååth E; Bengtsson G
    Environ Toxicol Chem; 2008 May; 27(5):1039-46. PubMed ID: 18419193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of spent mushroom substrate on the dissipation of polycyclic aromatic hydrocarbons in agricultural soil.
    Zhou J; Ge W; Zhang X; Wu J; Chen Q; Ma D; Chai C
    Chemosphere; 2020 Nov; 259():127462. PubMed ID: 32590177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil.
    Kulik N; Goi A; Trapido M; Tuhkanen T
    J Environ Manage; 2006 Mar; 78(4):382-91. PubMed ID: 16154683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil.
    Sawulski P; Boots B; Clipson N; Doyle E
    Lett Appl Microbiol; 2015 Aug; 61(2):199-207. PubMed ID: 26031321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GC-MS-MS analysis of bacterial fatty acids in heavily creosote-contaminated soil samples.
    Byss M; Tríska J; Elhottová D
    Anal Bioanal Chem; 2007 Feb; 387(4):1573-7. PubMed ID: 17219099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycelium growth and degradation of creosote-treated wood by basydiomycetes.
    Galli E; Brancaleoni E; Di Mario F; Donati E; Frattoni M; Polcaro CM; Rapanà P
    Chemosphere; 2008 Jul; 72(7):1069-72. PubMed ID: 18501950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil.
    Bezza FA; Chirwa EM
    Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil.
    Lladó S; Jiménez N; Viñas M; Solanas AM
    Biodegradation; 2009 Sep; 20(5):593-601. PubMed ID: 19153811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.