BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18782724)

  • 1. Destabilization of DNA duplexes by oxidative damage at guanine: implications for lesion recognition and repair.
    Jiranusornkul S; Laughton CA
    J R Soc Interface; 2008 Dec; 5 Suppl 3(Suppl 3):S191-8. PubMed ID: 18782724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the recognition of the FapydG lesion (2,6-diamino-4-hydroxy-5-formamidopyrimidine) by formamidopyrimidine-DNA glycosylase.
    Coste F; Ober M; Carell T; Boiteux S; Zelwer C; Castaing B
    J Biol Chem; 2004 Oct; 279(42):44074-83. PubMed ID: 15249553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Oligonucleotides Containing the N
    Yang H; Tang JA; Greenberg MM
    Chemistry; 2020 Apr; 26(24):5441-5448. PubMed ID: 32271495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excision of formamidopyrimidine lesions by endonucleases III and VIII is not a major DNA repair pathway in Escherichia coli.
    Wiederholt CJ; Patro JN; Jiang YL; Haraguchi K; Greenberg MM
    Nucleic Acids Res; 2005; 33(10):3331-8. PubMed ID: 15944451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Base pairing and replicative processing of the formamidopyrimidine-dG DNA lesion.
    Ober M; Müller H; Pieck C; Gierlich J; Carell T
    J Am Chem Soc; 2005 Dec; 127(51):18143-9. PubMed ID: 16366567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, stability, and conformation of the formamidopyrimidine G DNA lesion.
    Burgdorf LT; Carell T
    Chemistry; 2002 Jan; 8(1):293-301. PubMed ID: 11822460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulations reveal a common binding mode for glycosylase binding of oxidatively damaged DNA lesions.
    Song K; Kelso C; de los Santos C; Grollman AP; Simmerling C
    J Am Chem Soc; 2007 Nov; 129(47):14536-7. PubMed ID: 17988127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of DNA containing Fapy.dG and its beta-C-nucleoside analogue by formamidopyrimidine DNA glycosylase and MutY.
    Wiederholt CJ; Delaney MO; Pope MA; David SS; Greenberg MM
    Biochemistry; 2003 Aug; 42(32):9755-60. PubMed ID: 12911318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel post-synthetic generation, isomeric resolution, and characterization of Fapy-dG within oligodeoxynucleotides: differential anomeric impacts on DNA duplex properties.
    Lukin M; Minetti CA; Remeta DP; Attaluri S; Johnson F; Breslauer KJ; de Los Santos C
    Nucleic Acids Res; 2011 Jul; 39(13):5776-89. PubMed ID: 21415012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A base-independent repair mechanism for DNA glycosylase--no discrimination within the active site.
    Blank ID; Sadeghian K; Ochsenfeld C
    Sci Rep; 2015 May; 5():10369. PubMed ID: 26013033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect O6-guanine alkylation on DNA flexibility studied by comparative molecular dynamics simulations.
    Kara M; Drsata T; Lankas F; Zacharias M
    Biopolymers; 2015 Jan; 103(1):23-32. PubMed ID: 25130987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function.
    Liu Z; Ding S; Kropachev K; Jia L; Amin S; Broyde S; Geacintov NE
    PLoS One; 2015; 10(9):e0137124. PubMed ID: 26340000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic effects of oxidative DNA damages: comparative mutagenesis of the imidazole ring-opened formamidopyrimidines (Fapy lesions) and 8-oxo-purines in simian kidney cells.
    Kalam MA; Haraguchi K; Chandani S; Loechler EL; Moriya M; Greenberg MM; Basu AK
    Nucleic Acids Res; 2006; 34(8):2305-15. PubMed ID: 16679449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of oligonucleotides containing formamidopyrimidine lesions (Fapy.dA, Fapy.dG) at defined sites.
    Haraguchi K; Delaney MO; Wiederholt CJ; Sambandam A; Hantosi Z; Greenberg MM
    Nucleic Acids Res Suppl; 2001; (1):129-30. PubMed ID: 12836298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA oligonucleotides with A, T, G or C opposite an abasic site: structure and dynamics.
    Chen J; Dupradeau FY; Case DA; Turner CJ; Stubbe J
    Nucleic Acids Res; 2008 Jan; 36(1):253-62. PubMed ID: 18025040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Modeling of the Major DNA Adduct Formed from Food Mutagen Ochratoxin A in NarI Two-Base Deletion Duplexes: Impact of Sequence Context and Adduct Ionization on Conformational Preference and Mutagenicity.
    Kathuria P; Sharma P; Manderville RA; Wetmore SD
    Chem Res Toxicol; 2017 Aug; 30(8):1582-1591. PubMed ID: 28719194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of lesion recognition by a DNA repair protein: thermodynamic characterization of formamidopyrimidine-glycosylase (Fpg) interactions with damaged DNA duplexes.
    Minetti CA; Remeta DP; Zharkov DO; Plum GE; Johnson F; Grollman AP; Breslauer KJ
    J Mol Biol; 2003 May; 328(5):1047-60. PubMed ID: 12729740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic behavior of DNA base pairs containing 8-oxoguanine.
    Cheng X; Kelso C; Hornak V; de los Santos C; Grollman AP; Simmerling C
    J Am Chem Soc; 2005 Oct; 127(40):13906-18. PubMed ID: 16201812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate discrimination by formamidopyrimidine-DNA glycosylase: a mutational analysis.
    Zaika EI; Perlow RA; Matz E; Broyde S; Gilboa R; Grollman AP; Zharkov DO
    J Biol Chem; 2004 Feb; 279(6):4849-61. PubMed ID: 14607836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the stability of oxidatively damaged DNA by single-molecule DNA stretching.
    McCauley MJ; Furman L; Dietrich CA; Rouzina I; Núñez ME; Williams MC
    Nucleic Acids Res; 2018 May; 46(8):4033-4043. PubMed ID: 29522114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.