These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 18782766)
1. Triggering protein folding within the GroEL-GroES complex. Madan D; Lin Z; Rye HS J Biol Chem; 2008 Nov; 283(46):32003-13. PubMed ID: 18782766 [TBL] [Abstract][Full Text] [Related]
2. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Hayer-Hartl MK; Martin J; Hartl FU Science; 1995 Aug; 269(5225):836-41. PubMed ID: 7638601 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602 [TBL] [Abstract][Full Text] [Related]
4. Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. Koike-Takeshita A; Yoshida M; Taguchi H J Biol Chem; 2008 Aug; 283(35):23774-81. PubMed ID: 18567584 [TBL] [Abstract][Full Text] [Related]
5. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system. Illingworth M; Salisbury J; Li W; Lin D; Chen L Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593 [TBL] [Abstract][Full Text] [Related]
6. BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers. Taguchi H; Tsukuda K; Motojima F; Koike-Takeshita A; Yoshida M J Biol Chem; 2004 Oct; 279(44):45737-43. PubMed ID: 15347650 [TBL] [Abstract][Full Text] [Related]
7. Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity. Kovács E; Sun Z; Liu H; Scott DJ; Karsisiotis AI; Clarke AR; Burston SG; Lund PA J Mol Biol; 2010 Mar; 396(5):1271-83. PubMed ID: 20006619 [TBL] [Abstract][Full Text] [Related]
8. Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level. Gupta AJ; Haldar S; Miličić G; Hartl FU; Hayer-Hartl M J Mol Biol; 2014 Jul; 426(15):2739-54. PubMed ID: 24816391 [TBL] [Abstract][Full Text] [Related]
9. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes. Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285 [TBL] [Abstract][Full Text] [Related]
10. GroEL and the GroEL-GroES Complex. Ishii N Subcell Biochem; 2017; 83():483-504. PubMed ID: 28271487 [TBL] [Abstract][Full Text] [Related]
11. GroEL mediates protein folding with a two successive timer mechanism. Ueno T; Taguchi H; Tadakuma H; Yoshida M; Funatsu T Mol Cell; 2004 May; 14(4):423-34. PubMed ID: 15149592 [TBL] [Abstract][Full Text] [Related]
12. Chaperones GroEL/GroES accelerate the refolding of a multidomain protein through modulating on-pathway intermediates. Dahiya V; Chaudhuri TK J Biol Chem; 2014 Jan; 289(1):286-98. PubMed ID: 24247249 [TBL] [Abstract][Full Text] [Related]
13. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Rye HS; Burston SG; Fenton WA; Beechem JM; Xu Z; Sigler PB; Horwich AL Nature; 1997 Aug; 388(6644):792-8. PubMed ID: 9285593 [TBL] [Abstract][Full Text] [Related]
14. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate. Taguchi H J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372 [TBL] [Abstract][Full Text] [Related]
15. ATP-triggered ADP release from the asymmetric chaperonin GroEL/GroES/ADP7 is not the rate-limiting step of the GroEL/GroES reaction cycle. Tyagi NK; Fenton WA; Horwich AL FEBS Lett; 2010 Mar; 584(5):951-3. PubMed ID: 20083109 [TBL] [Abstract][Full Text] [Related]
16. Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle. Sameshima T; Ueno T; Iizuka R; Ishii N; Terada N; Okabe K; Funatsu T J Biol Chem; 2008 Aug; 283(35):23765-73. PubMed ID: 18567585 [TBL] [Abstract][Full Text] [Related]
17. The C-terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein. Weaver J; Rye HS J Biol Chem; 2014 Aug; 289(33):23219-23232. PubMed ID: 24970895 [TBL] [Abstract][Full Text] [Related]
18. Repetitive protein unfolding by the trans ring of the GroEL-GroES chaperonin complex stimulates folding. Lin Z; Puchalla J; Shoup D; Rye HS J Biol Chem; 2013 Oct; 288(43):30944-55. PubMed ID: 24022487 [TBL] [Abstract][Full Text] [Related]
19. Determination of the number of active GroES subunits in the fused heptamer GroES required for interactions with GroEL. Nojima T; Murayama S; Yoshida M; Motojima F J Biol Chem; 2008 Jun; 283(26):18385-92. PubMed ID: 18430731 [TBL] [Abstract][Full Text] [Related]
20. Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins. Machida K; Fujiwara R; Tanaka T; Sakane I; Hongo K; Mizobata T; Kawata Y Biochim Biophys Acta; 2009 Sep; 1794(9):1344-54. PubMed ID: 19130907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]