These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1878312)

  • 1. Effects of consumption of ethanol on the biological monitoring of exposure to organic solvent vapours: a simulation study with trichloroethylene.
    Sato A; Endoh K; Kaneko T; Johanson G
    Br J Ind Med; 1991 Aug; 48(8):548-56. PubMed ID: 1878312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confounding factors in biological monitoring of exposure to organic solvents.
    Sato A
    Int Arch Occup Environ Health; 1993; 65(1 Suppl):S61-7. PubMed ID: 8406940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of environmental factors on the pharmacokinetic behaviour of organic solvent vapours.
    Sato A
    Ann Occup Hyg; 1991 Oct; 35(5):525-41. PubMed ID: 1746811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymes induced by ethanol differently affect the pharmacokinetics of trichloroethylene and 1,1,1-trichloroethane.
    Kaneko T; Wang PY; Sato A
    Occup Environ Med; 1994 Feb; 51(2):113-9. PubMed ID: 8111458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simulation study of physiological factors affecting pharmacokinetic behaviour of organic solvent vapours.
    Sato A; Endoh K; Kaneko T; Johanson G
    Br J Ind Med; 1991 May; 48(5):342-7. PubMed ID: 2039747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Individual differences in the kinetic behavior of trichloroethylene. A simulation study using a physiological pharmacokinetic model].
    Sato A; Endoh K; Kaneko T
    Sangyo Igaku; 1989 Sep; 31(5):348-54. PubMed ID: 2585814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of physiologically based pharmacokinetics to amalgamate kinetic data of trichloroethylene and tetrachloroethylene obtained in rats and man.
    Koizumi A
    Br J Ind Med; 1989 Apr; 46(4):239-49. PubMed ID: 2713280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of trichloroethylene in man. III. Interaction of trichloroethylene and ethanol.
    Müller G; Spassowski M; Henschler D
    Arch Toxicol; 1975; 33(3):173-89. PubMed ID: 1173750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol-induced enhancement of trichloroethylene metabolism and hepatotoxicity: difference from the effect of phenobarbital.
    Nakajima T; Okino T; Okuyama S; Kaneko T; Yonekura I; Sato A
    Toxicol Appl Pharmacol; 1988 Jun; 94(2):227-37. PubMed ID: 3388420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The relationship between external and internal doses of trichloroethylene. A simulation study using a physiological pharmacokinetic model].
    Kaneko T; Endoh K; Sato A
    Sangyo Igaku; 1989 Sep; 31(5):342-7. PubMed ID: 2585813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining physiologically based pharmacokinetic modeling with Monte Carlo simulation to derive an acute inhalation guidance value for trichloroethylene.
    Simon TW
    Regul Toxicol Pharmacol; 1997 Dec; 26(3):257-70. PubMed ID: 9441916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ethanol on toluene metabolism in man.
    Imbriani M; Ghittori S
    G Ital Med Lav Ergon; 1997; 19(4):177-81. PubMed ID: 9775012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of solvent central nervous system toxicity and ethanol interactions using a human population physiologically based kinetic and dynamic model.
    MacDonald AJ; Rostami-Hodjegan A; Tucker GT; Linkens DA
    Regul Toxicol Pharmacol; 2002 Apr; 35(2 Pt 1):165-76. PubMed ID: 12052002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trichloroacetic acid in urine as biological exposure equivalent for low exposure concentrations of trichloroethene.
    Csanády GA; Göen T; Klein D; Drexler H; Filser JG
    Arch Toxicol; 2010 Nov; 84(11):897-902. PubMed ID: 20414643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of S-(1,2-dichlorovinyl)glutathione in the blood of human volunteers exposed to trichloroethylene.
    Lash LH; Putt DA; Brashear WT; Abbas R; Parker JC; Fisher JW
    J Toxicol Environ Health A; 1999 Jan; 56(1):1-21. PubMed ID: 9923751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol.
    Fisher JW; Mahle D; Abbas R
    Toxicol Appl Pharmacol; 1998 Oct; 152(2):339-59. PubMed ID: 9853003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposed biological threshold limit values for industrial exposure to trichloroethylene vapor.
    Gubéran E
    Scand J Work Environ Health; 1977 Jun; 3(2):80-90. PubMed ID: 882860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme induction by ethanol consumption affects the pharmacokinetics of inhaled m-xylene only at high levels of exposure.
    Kaneko T; Wang PY; Sato A
    Arch Toxicol; 1993; 67(7):473-7. PubMed ID: 8239996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiologically-based pharmacokinetic model for trichloroethylene considering enterohepatic recirculation of major metabolites.
    Stenner RD; Merdink JL; Fisher JW; Bull RJ
    Risk Anal; 1998 Jun; 18(3):261-9. PubMed ID: 9664722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trichloroethylene exposure. Biological monitoring by breath and urine analyses.
    Droz PO; Fernández JG
    Br J Ind Med; 1978 Feb; 35(1):35-42. PubMed ID: 629887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.