BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 18783333)

  • 1. Nitric oxide and sphingolipids: mechanisms of interaction and role in cellular pathophysiology.
    Perrotta C; De Palma C; Clementi E
    Biol Chem; 2008 Nov; 389(11):1391-7. PubMed ID: 18783333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide, ceramide and sphingomyelinase-coupled receptors: a tale of enzymes and messengers coordinating cell death, survival and differentiation.
    Perrotta C; De Palma C; Falcone S; Sciorati C; Clementi E
    Life Sci; 2005 Aug; 77(14):1732-9. PubMed ID: 15946697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological roles of Acid and neutral sphingomyelinases and their regulation by nitric oxide.
    Perrotta C; Clementi E
    Physiology (Bethesda); 2010 Apr; 25(2):64-71. PubMed ID: 20430951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic GMP-dependent inhibition of acid sphingomyelinase by nitric oxide: an early step in protection against apoptosis.
    Barsacchi R; Perrotta C; Sestili P; Cantoni O; Moncada S; Clementi E
    Cell Death Differ; 2002 Nov; 9(11):1248-55. PubMed ID: 12404124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles of bioactive lipid signalling: lessons from sphingolipids.
    Hannun YA; Obeid LM
    Nat Rev Mol Cell Biol; 2008 Feb; 9(2):139-50. PubMed ID: 18216770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cellular system to study the role of nitric oxide in cell death, survival, and migration.
    Bulotta S; Perrotta C; Cerullo A; De Palma C; Clementi E; Borgese N
    Neurotoxicology; 2005 Oct; 26(5):841-5. PubMed ID: 15894375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingolipid signaling and redox regulation.
    Won JS; Singh I
    Free Radic Biol Med; 2006 Jun; 40(11):1875-88. PubMed ID: 16716889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide: a new player in plant signalling and defence responses.
    Wendehenne D; Durner J; Klessig DF
    Curr Opin Plant Biol; 2004 Aug; 7(4):449-55. PubMed ID: 15231269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between nitric oxide and sphingolipids and the potential consequences in physiology and pathology.
    Clementi E; Borgese N; Meldolesi J
    Trends Pharmacol Sci; 2003 Oct; 24(10):518-23. PubMed ID: 14559403
    [No Abstract]   [Full Text] [Related]  

  • 10. Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue.
    Yang GY; Taboada S; Liao J
    Methods Mol Biol; 2009; 512():119-56. PubMed ID: 19347276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingolipid metabolites in neural signalling and function.
    Colombaioni L; Garcia-Gil M
    Brain Res Brain Res Rev; 2004 Nov; 46(3):328-55. PubMed ID: 15571774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of sphingosine kinase and sphingolipid signaling.
    Pitson SM
    Trends Biochem Sci; 2011 Feb; 36(2):97-107. PubMed ID: 20870412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingolipids and cell death.
    Morales A; Lee H; Goñi FM; Kolesnick R; Fernandez-Checa JC
    Apoptosis; 2007 May; 12(5):923-39. PubMed ID: 17294080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NO signals in the haze: nitric oxide signalling in plant defence.
    Leitner M; Vandelle E; Gaupels F; Bellin D; Delledonne M
    Curr Opin Plant Biol; 2009 Aug; 12(4):451-8. PubMed ID: 19608448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide and mitochondrial biogenesis.
    Nisoli E; Carruba MO
    J Cell Sci; 2006 Jul; 119(Pt 14):2855-62. PubMed ID: 16825426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical tools to investigate sphingolipid metabolism and functions.
    Delgado A; Casas J; Llebaria A; Abad JL; Fabriás G
    ChemMedChem; 2007 May; 2(5):580-606. PubMed ID: 17252619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entamoeba invadens: sphingolipids metabolic regulation is the main component of a PKC signaling pathway in controlling cell growth and proliferation.
    Cerbon J; Olguin T; Alvarez-Grave PR; López-Sánchez RC
    Exp Parasitol; 2009 Jun; 122(2):106-11. PubMed ID: 19249300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide, cell bioenergetics and neurodegeneration.
    Moncada S; Bolaños JP
    J Neurochem; 2006 Jun; 97(6):1676-89. PubMed ID: 16805776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide signaling pathways at neural level in invertebrates: functional implications in cnidarians.
    Cristino L; Guglielmotti V; Cotugno A; Musio C; Santillo S
    Brain Res; 2008 Aug; 1225():17-25. PubMed ID: 18534563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HB-EGF stimulates eNOS expression and nitric oxide production and promotes eNOS dependent angiogenesis.
    Mehta VB; Zhou Y; Radulescu A; Besner GE
    Growth Factors; 2008 Dec; 26(6):301-15. PubMed ID: 18925469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.