These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18783619)

  • 1. Surface complexation modeling of Cu(II) adsorption on mixtures of hydrous ferric oxide and kaolinite.
    Lund TJ; Koretsky CM; Landry CJ; Schaller MS; Das S
    Geochem Trans; 2008 Sep; 9():9. PubMed ID: 18783619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface complexation modeling of Cd(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite.
    Schaller MS; Koretsky CM; Lund TJ; Landry CJ
    J Colloid Interface Sci; 2009 Nov; 339(2):302-9. PubMed ID: 19740474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemical behaviour of heavy metals in sludge effluents and solid deposits on the Zambian Copperbelt: Implication for effluent treatment and sludge reuse.
    Phiri C; Shimazui D; Otake T; Kikuchi R; Chintu I; Chirwa M; Kalaba L; Nyambe I; Sato T
    Sci Total Environ; 2021 May; 769():144342. PubMed ID: 33477054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid.
    Hizal J; Apak R
    J Colloid Interface Sci; 2006 Mar; 295(1):1-13. PubMed ID: 16168423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation.
    Veselská V; Fajgar R; Číhalová S; Bolanz RM; Göttlicher J; Steininger R; Siddique JA; Komárek M
    J Hazard Mater; 2016 Nov; 318():433-442. PubMed ID: 27450335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive surface complexation modeling of uranium(VI) adsorption onto quartz-sand dominated sediments.
    Dong W; Wan J
    Environ Sci Technol; 2014 Jun; 48(12):6569-77. PubMed ID: 24865372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the effects of soluble microbial product on phosphate adsorption onto fresh hydrous ferric oxides by surface complexation models.
    Mao Y; Wang W; Ma C
    Water Sci Technol; 2016 Nov; 74(10):2446-2453. PubMed ID: 27858801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glutamic acid on copper sorption onto kaolinite - Batch experiments and surface complexation modeling.
    Karimzadeh L; Barthen R; Stockmann M; Gruendig M; Franke K; Lippmann-Pipke J
    Chemosphere; 2017 Jul; 178():277-281. PubMed ID: 28334668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling.
    Heidmann I; Christl I; Leu C; Kretzschmar R
    J Colloid Interface Sci; 2005 Feb; 282(2):270-82. PubMed ID: 15589531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Complexation Modeling of Copper Sorption by Hydrous Oxides of Iron and Aluminum.
    Karthikeyan KG; Elliott HA
    J Colloid Interface Sci; 1999 Dec; 220(1):88-95. PubMed ID: 10550244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling interactions at the tributyltin-kaolinite interface.
    Hoch M; Weerasooriya R
    Chemosphere; 2005 Apr; 59(5):743-52. PubMed ID: 15792672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site.
    Dong W; Tokunaga TK; Davis JA; Wan J
    Environ Sci Technol; 2012 Feb; 46(3):1565-71. PubMed ID: 22191402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing the component additivity approach to surface complexation modeling using a novel cadmium-specific fluorescent probe technique.
    Johnson CR; Hopf J; Shrout JD; Fein JB
    J Colloid Interface Sci; 2019 Jan; 534():683-694. PubMed ID: 30268085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ precipitation of hydrous ferric oxide (HFO) for remediation of subsurface iodine contamination.
    Wang G; Szecsody JE; Avalos NM; Qafoku NP; Freedman VL
    J Contam Hydrol; 2020 Nov; 235():103705. PubMed ID: 32927336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uranyl adsorption onto hydrous ferric oxide-A re-evaluation for the diffuse layer model database.
    Mahoney JJ; Cadle SA; Jakubowski RT
    Environ Sci Technol; 2009 Dec; 43(24):9260-6. PubMed ID: 20000518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic Modeling of Phosphate Adsorption by Preformed and In situ formed Hydrous Ferric Oxides at Circumneutral pH.
    Mao Y; Yue Q
    Sci Rep; 2016 Oct; 6():35292. PubMed ID: 27739456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface complexation modeling of Cu(II) sorption to montmorillonite-bacteria composites.
    Qu C; Ma M; Chen W; Cai P; Huang Q
    Sci Total Environ; 2017 Dec; 607-608():1408-1418. PubMed ID: 28738531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Removal of Heavy Metals from Water by Hydrous Ferric Oxide-Modified Biochar.
    Li Y; Gao L; Lu Z; Wang Y; Wang Y; Wan S
    ACS Omega; 2020 Nov; 5(44):28702-28711. PubMed ID: 33195923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive adsorption behavior of heavy metals on kaolinite.
    Srivastava P; Singh B; Angove M
    J Colloid Interface Sci; 2005 Oct; 290(1):28-38. PubMed ID: 15935360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of iodide adsorption on oxides by surface complexation modeling with spectroscopic confirmation.
    Nagata T; Fukushi K; Takahashi Y
    J Colloid Interface Sci; 2009 Apr; 332(2):309-16. PubMed ID: 19176225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.