These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1878454)

  • 1. Interactions of copolymeric poly(glyceryl methacrylate)-collagen hydrogels with neural tissue: effects of structure and polar groups.
    Woerly S; Marchand R; Lavallée C
    Biomaterials; 1991 Mar; 12(2):197-203. PubMed ID: 1878454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracerebral implantation of synthetic polymer/biopolymer matrix: a new perspective for brain repair.
    Woerly S; Marchand R; Lavallée C
    Biomaterials; 1990 Mar; 11(2):97-107. PubMed ID: 2317539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracerebral implantation of ionic synthetic hydrogels: effect of polar substrata on astrocytosis and axons.
    Woerly S; Lavallée C; Marchand R
    J Neural Transplant Plast; 1992; 3(1):21-34. PubMed ID: 1571396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous PHPMA hydrogels for tissue repair and axonal regeneration in the injured spinal cord.
    Woerly S; Pinet E; De Robertis L; Bousmina M; Laroche G; Roitback T; Vargová L; Syková E
    J Biomater Sci Polym Ed; 1998; 9(7):681-711. PubMed ID: 9686335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies.
    Woerly S; Petrov P; Syková E; Roitbak T; Simonová Z; Harvey AR
    Tissue Eng; 1999 Oct; 5(5):467-88. PubMed ID: 10586102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental implantation of hydrogel into the bone.
    Korbelár P; Vacík J; Dylevský I
    J Biomed Mater Res; 1988 Sep; 22(9):751-62. PubMed ID: 3220843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo biocompatibility of collagen-poly(hydroxyethyl methacrylate) hydrogels.
    Jeyanthi R; Rao KP
    Biomaterials; 1990 May; 11(4):238-43. PubMed ID: 2200533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore structure analysis of swollen dextran-methacrylate hydrogels by SEM and mercury intrusion porosimetry.
    Kim SH; Chu CC
    J Biomed Mater Res; 2000; 53(3):258-66. PubMed ID: 10813766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a sialic acid-containing hydrogel of poly[N-(2-hydroxypropyl) methacrylamide]: characterization and implantation study.
    Woerly S; Fort S; Pignot-Paintrand I; Cottet C; Carcenac C; Savasta M
    Biomacromolecules; 2008 Sep; 9(9):2329-37. PubMed ID: 18715030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel).
    Woerly S; Pinet E; de Robertis L; Van Diep D; Bousmina M
    Biomaterials; 2001 May; 22(10):1095-111. PubMed ID: 11352090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair.
    Kubinová Š; Horák D; Hejčl A; Plichta Z; Kotek J; Proks V; Forostyak S; Syková E
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1298-309. PubMed ID: 23401421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of RGD modification on collagen matrix.
    Ren D; Hou S; Wang H; Luo D; Zhang L
    Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(3):293-303. PubMed ID: 16809131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study.
    Huang Y; He J; Gan L; Liu X; Wu Y; Wu F; Gu ZW
    Biomed Mater; 2014 Nov; 9(6):065007. PubMed ID: 25384201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(butyl methacrylate-co-methacrylic acid) tissue engineering scaffold with pro-angiogenic potential in vivo.
    Butler MJ; Sefton MV
    J Biomed Mater Res A; 2007 Aug; 82(2):265-73. PubMed ID: 17530634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of tissue-response to hydrogel composite materials.
    Greer RT; Knoll RL; Vale BH
    Scan Electron Microsc; 1979; (2):871-8, 634. PubMed ID: 524056
    [No Abstract]   [Full Text] [Related]  

  • 18. Zwitterionic hydrogels: an in vivo implantation study.
    Zhang Z; Chao T; Liu L; Cheng G; Ratner BD; Jiang S
    J Biomater Sci Polym Ed; 2009; 20(13):1845-59. PubMed ID: 19793443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inflammatory potential of dental Hydron: a literature review and pilot investigation in rats' connective tissue.
    Yesilsoy C; Morse DR
    Ann Dent; 1985; 44(1):21-6. PubMed ID: 3863537
    [No Abstract]   [Full Text] [Related]  

  • 20. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair.
    Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E
    J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.