BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 18784651)

  • 1. Structural insights into amino acid binding and gene control by a lysine riboswitch.
    Serganov A; Huang L; Patel DJ
    Nature; 2008 Oct; 455(7217):1263-7. PubMed ID: 18784651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the lysine riboswitch regulatory mRNA element.
    Garst AD; Héroux A; Rambo RP; Batey RT
    J Biol Chem; 2008 Aug; 283(33):22347-51. PubMed ID: 18593706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of lysine binding residues in the global folding of the lysC riboswitch.
    Smith-Peter E; Lamontagne AM; Lafontaine DA
    RNA Biol; 2015; 12(12):1372-82. PubMed ID: 26403229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch.
    Huang L; Serganov A; Patel DJ
    Mol Cell; 2010 Dec; 40(5):774-86. PubMed ID: 21145485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch.
    Huang L; Ishibe-Murakami S; Patel DJ; Serganov A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(36):14801-6. PubMed ID: 21873197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
    Jenkins JL; Krucinska J; McCarty RM; Bandarian V; Wedekind JE
    J Biol Chem; 2011 Jul; 286(28):24626-37. PubMed ID: 21592962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.
    Stagno JR; Liu Y; Bhandari YR; Conrad CE; Panja S; Swain M; Fan L; Nelson G; Li C; Wendel DR; White TA; Coe JD; Wiedorn MO; Knoska J; Oberthuer D; Tuckey RA; Yu P; Dyba M; Tarasov SG; Weierstall U; Grant TD; Schwieters CD; Zhang J; Ferré-D'Amaré AR; Fromme P; Draper DE; Liang M; Hunter MS; Boutet S; Tan K; Zuo X; Ji X; Barty A; Zatsepin NA; Chapman HN; Spence JC; Woodson SA; Wang YX
    Nature; 2017 Jan; 541(7636):242-246. PubMed ID: 27841871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular insights into the ligand-controlled organization of the SAM-I riboswitch.
    Heppell B; Blouin S; Dussault AM; Mulhbacher J; Ennifar E; Penedo JC; Lafontaine DA
    Nat Chem Biol; 2011 Jun; 7(6):384-92. PubMed ID: 21532599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-acting riboswitch control of translation initiation and mRNA decay.
    Caron MP; Bastet L; Lussier A; Simoneau-Roy M; Massé E; Lafontaine DA
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):E3444-53. PubMed ID: 23169642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial lysine analogs that target lysine riboswitches.
    Blount KF; Wang JX; Lim J; Sudarsan N; Breaker RR
    Nat Chem Biol; 2007 Jan; 3(1):44-9. PubMed ID: 17143270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the regulatory landscape of the lysine riboswitch.
    Garst AD; Porter EB; Batey RT
    J Mol Biol; 2012 Oct; 423(1):17-33. PubMed ID: 22771573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch.
    Serganov A; Huang L; Patel DJ
    Nature; 2009 Mar; 458(7235):233-7. PubMed ID: 19169240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for guanidine sensing by the
    Battaglia RA; Price IR; Ke A
    RNA; 2017 Apr; 23(4):578-585. PubMed ID: 28096518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.
    Serganov A; Polonskaia A; Phan AT; Breaker RR; Patel DJ
    Nature; 2006 Jun; 441(7097):1167-71. PubMed ID: 16728979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch?
    Rodionov DA; Vitreschak AG; Mironov AA; Gelfand MS
    Nucleic Acids Res; 2003 Dec; 31(23):6748-57. PubMed ID: 14627808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch.
    Lu C; Ding F; Chowdhury A; Pradhan V; Tomsic J; Holmes WM; Henkin TM; Ke A
    J Mol Biol; 2010 Dec; 404(5):803-18. PubMed ID: 20951706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of solution and crystal structures of preQ1 riboswitch reveals calcium-induced changes in conformation and dynamics.
    Zhang Q; Kang M; Peterson RD; Feigon J
    J Am Chem Soc; 2011 Apr; 133(14):5190-3. PubMed ID: 21410253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid recognition and gene regulation by riboswitches.
    Serganov A; Patel DJ
    Biochim Biophys Acta; 2009; 1789(9-10):592-611. PubMed ID: 19619684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolite recognition principles and molecular mechanisms underlying riboswitch function.
    Serganov A; Patel DJ
    Annu Rev Biophys; 2012; 41():343-70. PubMed ID: 22577823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.