These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Optically reconfigurable gate array using a colored configuration. Fujimori T; Watanabe M Appl Opt; 2018 Oct; 57(29):8625-8631. PubMed ID: 30461936 [TBL] [Abstract][Full Text] [Related]
3. Programmable optically reconfigurable gate array architecture and its writer. Kubota S; Watanabe M Appl Opt; 2009 Jan; 48(2):302-8. PubMed ID: 19137040 [TBL] [Abstract][Full Text] [Related]
4. Formation of holographic polymer-dispersed liquid crystal memory by angle-multiplexing recording for optically reconfigurable gate arrays. Ogiwara A; Watanabe M Appl Opt; 2015 Dec; 54(36):10623-9. PubMed ID: 26837028 [TBL] [Abstract][Full Text] [Related]
5. Optical configuration acceleration on a new optically reconfigurable gate array very large scale integration using a negative logic implementation. Moriwaki R; Watanabe M Appl Opt; 2013 Mar; 52(9):1939-46. PubMed ID: 23518740 [TBL] [Abstract][Full Text] [Related]
6. High-speed scrubbing demonstration using an optically reconfigurable gate array. Fujimori T; Watanabe M Opt Express; 2017 Apr; 25(7):7807-7817. PubMed ID: 28380899 [TBL] [Abstract][Full Text] [Related]
7. Superimposing acceleration and optimization method of optical reconfiguration speed without any increase of laser power. Mabuchi T; Watanabe M Appl Opt; 2010 Aug; 49(22):4120-6. PubMed ID: 20676162 [TBL] [Abstract][Full Text] [Related]
8. Holographic polymer-dispersed liquid crystal memory for optically reconfigurable gate array using subwavelength grating mask. Ogiwara A; Watanabe M; Mabuchi T; Kobayashi F Appl Opt; 2011 Dec; 50(34):6369-76. PubMed ID: 22192988 [TBL] [Abstract][Full Text] [Related]
9. Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays. Ogiwara A; Watanabe M; Mabuchi T; Kobayashi F Appl Opt; 2010 Aug; 49(22):4255-61. PubMed ID: 20676180 [TBL] [Abstract][Full Text] [Related]
10. Dynamic optically reconfigurable gate array very large-scale integration with partial reconfiguration capability. Seto D; Nakajima M; Watanabe M Appl Opt; 2010 Dec; 49(36):6986-94. PubMed ID: 21173833 [TBL] [Abstract][Full Text] [Related]
11. Optical reconfiguration by anisotropic diffraction in holographic polymer-dispersed liquid crystal memory. Ogiwara A; Watanabe M Appl Opt; 2012 Jul; 51(21):5168-77. PubMed ID: 22858959 [TBL] [Abstract][Full Text] [Related]
12. Tolerance of holographic polymer-dispersed liquid crystal memory for gamma-ray irradiation. Ogiwara A; Watanabe M; Ito Y Appl Opt; 2017 Jun; 56(16):4854-4860. PubMed ID: 29047625 [TBL] [Abstract][Full Text] [Related]
13. Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal. Ogiwara A; Watanabe M; Moriwaki R Opt Lett; 2013 Apr; 38(7):1158-60. PubMed ID: 23546276 [TBL] [Abstract][Full Text] [Related]
14. Temperature dependence of anisotropic diffraction in holographic polymer-dispersed liquid crystal memory. Ogiwara A; Watanabe M; Moriwaki R Appl Opt; 2013 Sep; 52(26):6529-36. PubMed ID: 24085129 [TBL] [Abstract][Full Text] [Related]
15. Radiation-hardened configuration context realization for field programmable gate arrays. Shinba H; Watanabe M Appl Opt; 2020 Jul; 59(19):5680-5686. PubMed ID: 32609689 [TBL] [Abstract][Full Text] [Related]
17. Development of a multitechnology field-programmable gate array suitable for photonic information processing. Mal P; Cantin JF; Beyette FR Appl Opt; 2005 Aug; 44(22):4753-60. PubMed ID: 16075888 [TBL] [Abstract][Full Text] [Related]
18. A Dynamically Reconfigurable Ambipolar Black Phosphorus Memory Device. Tian H; Deng B; Chin ML; Yan X; Jiang H; Han SJ; Sun V; Xia Q; Dubey M; Xia F; Wang H ACS Nano; 2016 Nov; 10(11):10428-10435. PubMed ID: 27794601 [TBL] [Abstract][Full Text] [Related]