BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 18784926)

  • 1. The interface between glial progenitors and gliomas.
    Canoll P; Goldman JE
    Acta Neuropathol; 2008 Nov; 116(5):465-77. PubMed ID: 18784926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial progenitor-like phenotype in low-grade glioma and enhanced CD133-expression and neuronal lineage differentiation potential in high-grade glioma.
    Rebetz J; Tian D; Persson A; Widegren B; Salford LG; Englund E; Gisselsson D; Fan X
    PLoS One; 2008 Apr; 3(4):e1936. PubMed ID: 18398462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain.
    Assanah MC; Bruce JN; Suzuki SO; Chen A; Goldman JE; Canoll P
    Glia; 2009 Dec; 57(16):1835-47. PubMed ID: 19533602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses.
    Assanah M; Lochhead R; Ogden A; Bruce J; Goldman J; Canoll P
    J Neurosci; 2006 Jun; 26(25):6781-90. PubMed ID: 16793885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Up-regulation of neuropoiesis generating glial progenitors that infiltrate rat intracranial glioma.
    Duntsch C; Zhou Q; Weimar JD; Frankel B; Robertson JH; Pourmotabbed T
    J Neurooncol; 2005 Feb; 71(3):245-55. PubMed ID: 15735912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial progenitors in the brainstem give rise to malignant gliomas by platelet-derived growth factor stimulation.
    Masui K; Suzuki SO; Torisu R; Goldman JE; Canoll P; Iwaki T
    Glia; 2010 Jul; 58(9):1050-65. PubMed ID: 20468047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glial progenitors as targets for transformation in glioma.
    Ilkhanizadeh S; Lau J; Huang M; Foster DJ; Wong R; Frantz A; Wang S; Weiss WA; Persson AI
    Adv Cancer Res; 2014; 121():1-65. PubMed ID: 24889528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental glial biology: the key to understanding glial tumors.
    Linskey ME
    Clin Neurosurg; 2000; 47():46-71. PubMed ID: 11197717
    [No Abstract]   [Full Text] [Related]  

  • 9. Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes.
    Auvergne RM; Sim FJ; Wang S; Chandler-Militello D; Burch J; Al Fanek Y; Davis D; Benraiss A; Walter K; Achanta P; Johnson M; Quinones-Hinojosa A; Natesan S; Ford HL; Goldman SA
    Cell Rep; 2013 Jun; 3(6):2127-41. PubMed ID: 23727239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas.
    Ogden AT; Waziri AE; Lochhead RA; Fusco D; Lopez K; Ellis JA; Kang J; Assanah M; McKhann GM; Sisti MB; McCormick PC; Canoll P; Bruce JN
    Neurosurgery; 2008 Feb; 62(2):505-14; discussion 514-5. PubMed ID: 18382330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of mitotic Olig2 cells in adult human brain and gliomas: implications for glioma histogenesis and biology.
    Rhee W; Ray S; Yokoo H; Hoane ME; Lee CC; Mikheev AM; Horner PJ; Rostomily RC
    Glia; 2009 Apr; 57(5):510-23. PubMed ID: 18837053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of neuronal phenotypes from NG2+ glial progenitors by inhibiting epidermal growth factor receptor in mouse spinal cord injury.
    Ju P; Zhang S; Yeap Y; Feng Z
    Glia; 2012 Nov; 60(11):1801-14. PubMed ID: 22865681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glial fibrillary acidic protein-expressing neural progenitors give rise to immature neurons via early intermediate progenitors expressing both glial fibrillary acidic protein and neuronal markers in the adult hippocampus.
    Liu Y; Namba T; Liu J; Suzuki R; Shioda S; Seki T
    Neuroscience; 2010 Mar; 166(1):241-51. PubMed ID: 20026190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRIM11 is overexpressed in high-grade gliomas and promotes proliferation, invasion, migration and glial tumor growth.
    Di K; Linskey ME; Bota DA
    Oncogene; 2013 Oct; 32(42):5038-47. PubMed ID: 23178488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human von Willebrand factor (factor VIII-related antigen) in glial neoplastic cells of brain gliomas.
    Nowacki P; Tabaka J
    Folia Neuropathol; 2003; 41(1):23-7. PubMed ID: 12862392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing OLIG2 function in tumorigenicity and plasticity to target malignant gliomas.
    Kosty J; Lu F; Kupp R; Mehta S; Lu QR
    Cell Cycle; 2017 Sep; 16(18):1654-1660. PubMed ID: 28806136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord.
    Yamamoto S; Yamamoto N; Kitamura T; Nakamura K; Nakafuku M
    Exp Neurol; 2001 Nov; 172(1):115-27. PubMed ID: 11681845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal stem cells in the central nervous system and in human diseases.
    Wu Q; Wang X
    Protein Cell; 2012 Apr; 3(4):262-70. PubMed ID: 22528753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell transcriptome analysis of lineage diversity in high-grade glioma.
    Yuan J; Levitin HM; Frattini V; Bush EC; Boyett DM; Samanamud J; Ceccarelli M; Dovas A; Zanazzi G; Canoll P; Bruce JN; Lasorella A; Iavarone A; Sims PA
    Genome Med; 2018 Jul; 10(1):57. PubMed ID: 30041684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro identification and functional characterization of glial precursor cells in human gliomas.
    Colin C; Baeza N; Tong S; Bouvier C; Quilichini B; Durbec P; Figarella-Branger D
    Neuropathol Appl Neurobiol; 2006 Apr; 32(2):189-202. PubMed ID: 16599947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.