These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 18785222)
41. Cross-resistance to Bacillus thuringiensis toxin Cry1Ja in a strain of diamondback moth adapted to artificial diet. Tabashnik BE; Johnson KW; Engleman JT; Baum JA J Invertebr Pathol; 2000 Jul; 76(1):81-3. PubMed ID: 10963409 [No Abstract] [Full Text] [Related]
42. Susceptibility of Plutella xylostella (L.) (Lepidoptera: Plutellidae) populations in Mexico to commercial formulations of Bacillus thuringiensis. Díaz-Gomez O; Rodríguez JC; Shelton AM; Lagunes A; Bujanos R J Econ Entomol; 2000 Jun; 93(3):963-70. PubMed ID: 10902356 [TBL] [Abstract][Full Text] [Related]
43. Characterization and comparison of midgut proteases of Bacillus thuringiensis susceptible and resistant diamondback moth (Plutellidae: Lepidoptera). Mohan M; Gujar GT J Invertebr Pathol; 2003 Jan; 82(1):1-11. PubMed ID: 12581714 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis. Nian XG; He YR; Lu LH; Zhao R Pest Manag Sci; 2015 Dec; 71(12):1675-84. PubMed ID: 25641869 [TBL] [Abstract][Full Text] [Related]
45. Identification and molecular characterization of novel cry1-type toxin genes from Bacillus thuringiensis K1 isolated in Korea. Li MS; Choi JY; Roh JY; Shim HJ; Kang JN; Kim YS; Wang Y; Yu ZN; Jin BR; Je YH J Microbiol Biotechnol; 2007 Jan; 17(1):15-20. PubMed ID: 18051348 [TBL] [Abstract][Full Text] [Related]
46. Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. Raymond B; Lijek RS; Griffiths RI; Bonsall MB J Invertebr Pathol; 2008 Sep; 99(1):103-11. PubMed ID: 18533180 [TBL] [Abstract][Full Text] [Related]
47. Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. Hernández-Martínez P; Ferré J; Escriche B J Invertebr Pathol; 2008 Mar; 97(3):245-50. PubMed ID: 18082763 [TBL] [Abstract][Full Text] [Related]
50. Interaction between the predator Podisus nigrispinus (Hemiptera: Pentatomidae) and the entomopathogenic bacteria Bacillus thuringiensis. Carvalho VF; Vacari AM; Pomari AF; De Bortoli CP; Ramalho DG; De Bortoli SA Environ Entomol; 2012 Dec; 41(6):1454-61. PubMed ID: 23321092 [TBL] [Abstract][Full Text] [Related]
51. A new Tunisian strain of Bacillus thuringiensis kurstaki having high insecticidal activity and delta-endotoxin yield. Saadaoui I; Rouis S; Jaoua S Arch Microbiol; 2009 Apr; 191(4):341-8. PubMed ID: 19214476 [TBL] [Abstract][Full Text] [Related]
52. Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). Milne R; Liu Y; Gauthier D; van Frankenhuyzen K J Invertebr Pathol; 2008 Oct; 99(2):166-72. PubMed ID: 18585733 [TBL] [Abstract][Full Text] [Related]
53. Microsatellites reveal a lack of structure in Australian populations of the diamondback moth, Plutella xylostella (L.). Endersby NM; McKechnie SW; Ridland PM; Weeks AR Mol Ecol; 2006 Jan; 15(1):107-18. PubMed ID: 16367834 [TBL] [Abstract][Full Text] [Related]
54. Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae). Tabashnik BE; Finson N; Johnson MW; Moar WJ Appl Environ Microbiol; 1993 May; 59(5):1332-5. PubMed ID: 16348929 [TBL] [Abstract][Full Text] [Related]
55. Cross-Resistance to Bacillus thuringiensis Toxin CryIF in the Diamondback Moth (Plutella xylostella). Tabashnik BE; Finson N; Johnson MW; Heckel DG Appl Environ Microbiol; 1994 Dec; 60(12):4627-9. PubMed ID: 16349471 [TBL] [Abstract][Full Text] [Related]
56. Rapid report acetamiprid resistance and cross-resistance in the diamondback moth, Plutella xylostella. Ninsin KD Pest Manag Sci; 2004 Sep; 60(9):839-41. PubMed ID: 15382497 [TBL] [Abstract][Full Text] [Related]
57. Isolation of Bacillus thuringiensis from intertidal brackish sediments in mangroves. Maeda M; Mizuki E; Hara M; Tanaka R; Akao T; Yamashita S; Ohba M Microbiol Res; 2001; 156(2):195-8. PubMed ID: 11572461 [TBL] [Abstract][Full Text] [Related]
58. Purification of the insecticidal Cry2Ad protein from a Bt-isolated BRC-HZP10 strain and toxin assay to the diamondback moth, Plutella xylostella (L.). Liao JY; Gao YQ; Wu QY; Zhu YC; You MS Genet Mol Res; 2015 Jul; 14(3):7661-70. PubMed ID: 26214446 [TBL] [Abstract][Full Text] [Related]
59. Cross-utilization and expression of outer membrane receptor proteins for siderophore uptake by Diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) gut bacteria. Indiragandhi P; Anandham R; Madhaiyan M; Kim GH; Sa T FEMS Microbiol Lett; 2008 Dec; 289(1):27-33. PubMed ID: 19054090 [TBL] [Abstract][Full Text] [Related]
60. A Change in a Single Midgut Receptor in the Diamondback Moth (Plutella xylostella) Is Only in Part Responsible for Field Resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. Wright DJ; Iqbal M; Granero F; Ferre J Appl Environ Microbiol; 1997 May; 63(5):1814-9. PubMed ID: 16535597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]