These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 1878554)
1. [Postsynaptic potentiation of end plate currents in the rat diaphragm at different levels of synaptic acetylcholinesterase activity]. Krivoĭ II; Seĭ TP Biull Eksp Biol Med; 1991 May; 111(5):458-60. PubMed ID: 1878554 [TBL] [Abstract][Full Text] [Related]
2. [Miniature currents of the endplates of the muscle fibers of the diaphragm of the rat after inhibition of acetylcholinesterase with galanthamine]. Krivoĭ II; Kuleshov VI; Matiushkin DP; Sanotskiĭ VI; Seĭ TP Neirofiziologiia; 1985; 17(5):607-14. PubMed ID: 2999623 [TBL] [Abstract][Full Text] [Related]
3. [Quantitative estimation of synaptic acetylcholinesterase inhibition with galanthamine using parameters of miniature endplate currents]. Krivoĭ II Biull Eksp Biol Med; 1988 Jun; 105(6):665-7. PubMed ID: 3390582 [TBL] [Abstract][Full Text] [Related]
4. [Postsynaptic potentiation of miniature currents of muscle fiber endplates in the rat diaphragm. The effect of an acetylcholinesterase inhibitor, temperature and curare]. Krivoĭ II; Seĭ TP Neirofiziologiia; 1987; 19(4):504-12. PubMed ID: 2821414 [TBL] [Abstract][Full Text] [Related]
5. [An attempt to estimate various characteristics of neuro-muscular transmission from the rising phase of miniature end-plate currents]. Krivoĭ II Neirofiziologiia; 1989; 21(2):272-5. PubMed ID: 2547169 [TBL] [Abstract][Full Text] [Related]
6. [Features of the postsynaptic potentials and ion currents in synapses of fast and slow rat muscle fibers]. Fedorov VV Neirofiziologiia; 1980; 12(6):627-36. PubMed ID: 6255356 [TBL] [Abstract][Full Text] [Related]
7. [Postsynaptic potentiation and desensitization at the myoneural synapse of the frog induced by rhythmic stimulation of a motor nerve]. Giniatullin RA; Bal'tser SK; Nikol'skiĭ EE; Magazanik LG Neirofiziologiia; 1986; 18(5):645-54. PubMed ID: 3022167 [TBL] [Abstract][Full Text] [Related]
8. [The characteristics of the action of calcium ions on miniature end-plate currents after the disruption of mediator hydrolysis]. Giniatullin RA; Khazipov RN Neirofiziologiia; 1990; 22(4):556-9. PubMed ID: 2284030 [TBL] [Abstract][Full Text] [Related]
9. [Ratio of the rate of end-plate current decay to the value of the quantum content and to previous synaptic activity]. Magazanik LG; Nikol'skiĭ EE; Giniatullin RA Dokl Akad Nauk SSSR; 1983; 271(2):489-92. PubMed ID: 6605238 [No Abstract] [Full Text] [Related]
10. [Analysis of postsynaptic currents in the phasic and tonic muscle fibers of the extraocular muscles of the rat]. Fedorov VV Neirofiziologiia; 1987; 19(1):120-9. PubMed ID: 2437465 [TBL] [Abstract][Full Text] [Related]
11. The origin of spontaneous electrical activity at the end-plate zone. Brown WF; Varkey GP Ann Neurol; 1981 Dec; 10(6):557-60. PubMed ID: 6275771 [TBL] [Abstract][Full Text] [Related]
12. [Effect of changes in membrane potential and temperature on the post-synaptic potential on the neuromuscular junction of the frog]. Magazanik LG; Giniatulin RA Neirofiziologiia; 1986; 18(4):512-8. PubMed ID: 3020453 [TBL] [Abstract][Full Text] [Related]
13. Electrophysiological and biochemical effects of single and multiple doses of the organophosphate diazinon in the mouse. de Blaquière GE; Waters L; Blain PG; Williams FM Toxicol Appl Pharmacol; 2000 Jul; 166(2):81-91. PubMed ID: 10896849 [TBL] [Abstract][Full Text] [Related]
14. A correlation between quantal content and decay time of endplate currents in frog muscles with intact cholinesterase. Giniatullin RA; Khazipov RN; Vyskocil F J Physiol; 1993 Jul; 466():95-103. PubMed ID: 8410718 [TBL] [Abstract][Full Text] [Related]
15. The actions of dimethyl sulfoxide on neuromuscular transmission. McLarnon JG; Saint DA; Quastel DM Mol Pharmacol; 1986 Dec; 30(6):631-8. PubMed ID: 3785140 [TBL] [Abstract][Full Text] [Related]
16. [Temporal characteristics of multiquantum currents in the end plate detected by acetylcholinesterase inhibition]. Giniatullin RA; Mazanik LG; Shvetsov AB Dokl Akad Nauk SSSR; 1987; 297(1):240-4. PubMed ID: 3436236 [No Abstract] [Full Text] [Related]
17. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011 [TBL] [Abstract][Full Text] [Related]
18. Exercise effects on recovery of muscle acetylcholinesterase from reduced neuromuscular activity. Gardiner PF; Lapointe M; Gravel D Muscle Nerve; 1982; 5(5):363-8. PubMed ID: 6289098 [TBL] [Abstract][Full Text] [Related]
19. Frequency-dependent properties of inhibitory synapses in the rostral nucleus of the solitary tract. Grabauskas G; Bradley RM J Neurophysiol; 2003 Jan; 89(1):199-211. PubMed ID: 12522172 [TBL] [Abstract][Full Text] [Related]
20. [Factors determining the duration of a single postsynaptic response in neuromuscular junctions]. Magazanik LG; Fedorov VV; Snetkov VA Neirofiziologiia; 1984; 16(5):590-602. PubMed ID: 6096734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]