These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 18785656)
21. Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. Das S; Jean JS; Kar S; Chou ML; Chen CY J Hazard Mater; 2014 May; 272():112-20. PubMed ID: 24685527 [TBL] [Abstract][Full Text] [Related]
22. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Ben Farhat M; Farhat A; Bejar W; Kammoun R; Bouchaala K; Fourati A; Antoun H; Bejar S; Chouayekh H Arch Microbiol; 2009 Nov; 191(11):815-24. PubMed ID: 19771411 [TBL] [Abstract][Full Text] [Related]
23. The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia. Wakelin SA; Gupta VV; Harvey PR; Ryder MH Can J Microbiol; 2007 Jan; 53(1):106-15. PubMed ID: 17496956 [TBL] [Abstract][Full Text] [Related]
24. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Rajkumar M; Nagendran R; Lee KJ; Lee WH; Kim SZ Chemosphere; 2006 Feb; 62(5):741-8. PubMed ID: 15982703 [TBL] [Abstract][Full Text] [Related]
25. Genomic insight of phosphate solubilization and plant growth promotion of two taxonomically distinct winter crops by Enterobacter sp. DRP3. Saha KK; Mandal S; Barman A; Mondal S; Chatterjee S; Mandal NC J Appl Microbiol; 2024 Jun; 135(6):. PubMed ID: 38877666 [TBL] [Abstract][Full Text] [Related]
26. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Sheng XF; Xia JJ; Jiang CY; He LY; Qian M Environ Pollut; 2008 Dec; 156(3):1164-70. PubMed ID: 18490091 [TBL] [Abstract][Full Text] [Related]
27. Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. Jha PN; Kumar A J Appl Microbiol; 2007 Oct; 103(4):1311-20. PubMed ID: 17897235 [TBL] [Abstract][Full Text] [Related]
28. Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. Panhwar QA; Radziah O; Zaharah AR; Sariah M; Razi IM J Environ Biol; 2011 Sep; 32(5):607-12. PubMed ID: 22319876 [TBL] [Abstract][Full Text] [Related]
29. Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. Kannan V; Sureendar R J Basic Microbiol; 2009 Apr; 49(2):158-64. PubMed ID: 18792056 [TBL] [Abstract][Full Text] [Related]
30. Acinetobacter strains IH9 and OCI1, two rhizospheric phosphate solubilizing isolates able to promote plant growth, constitute a new genomovar of Acinetobacter calcoaceticus. Peix A; Lang E; Verbarg S; Spröer C; Rivas R; Santa-Regina I; Mateos PF; Martínez-Molina E; Rodríguez-Barrueco C; Velázquez E Syst Appl Microbiol; 2009 Aug; 32(5):334-41. PubMed ID: 19467815 [TBL] [Abstract][Full Text] [Related]
31. Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea. Kim C; Kecskés ML; Deaker RJ; Gilchrist K; New PB; Kennedy IR; Kim S; Sa T Can J Microbiol; 2005 Nov; 51(11):948-56. PubMed ID: 16333334 [TBL] [Abstract][Full Text] [Related]
32. [Auxin production by bacteria associated with orchid roots]. Tsavkelova EA; Cherdyntseva TA; Netrusov AI Mikrobiologiia; 2005; 74(1):55-62. PubMed ID: 15835779 [TBL] [Abstract][Full Text] [Related]
33. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. Scheid D; Stubner S; Conrad R FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368 [TBL] [Abstract][Full Text] [Related]
34. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Ma Y; Rajkumar M; Freitas H J Environ Manage; 2009 Feb; 90(2):831-7. PubMed ID: 18329785 [TBL] [Abstract][Full Text] [Related]
35. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Vassilev N; Vassileva M; Nikolaeva I Appl Microbiol Biotechnol; 2006 Jun; 71(2):137-44. PubMed ID: 16544140 [TBL] [Abstract][Full Text] [Related]
36. Clostridium sulfidigenes sp. nov., a mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from pond sediment. Sallam A; Steinbüchel A Int J Syst Evol Microbiol; 2009 Jul; 59(Pt 7):1661-5. PubMed ID: 19542123 [TBL] [Abstract][Full Text] [Related]
37. Is phosphate solubilizing ability in plant growth-promoting rhizobacteria isolated from chickpea linked to their ability to produce ACC deaminase? Alemneh AA; Zhou Y; Ryder MH; Denton MD J Appl Microbiol; 2021 Nov; 131(5):2416-2432. PubMed ID: 33884699 [TBL] [Abstract][Full Text] [Related]
38. Complete genome sequence of Pandoraea thiooxydans DSM 25325(T), a thiosulfate-oxidizing bacterium. Yong D; Ee R; Lim YL; Yu CY; Ang GY; How KY; Tee KK; Yin WF; Chan KG J Biotechnol; 2016 Jan; 217():51-2. PubMed ID: 26603120 [TBL] [Abstract][Full Text] [Related]
39. Phosphate solubilization and multiple plant growth promoting properties of Mesorhizobium species nodulating chickpea from acidic soils of Ethiopia. Muleta A; Tesfaye K; Haile Selassie TH; Cook DR; Assefa F Arch Microbiol; 2021 Jul; 203(5):2129-2137. PubMed ID: 33611634 [TBL] [Abstract][Full Text] [Related]
40. Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Rudresh DL; Shivaprakash MK; Prasad RD Can J Microbiol; 2005 Mar; 51(3):217-22. PubMed ID: 15920619 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]