These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 18785695)

  • 1. Atypical quantum confinement effect in silicon nanowires.
    Sorokin PB; Avramov PV; Chernozatonskii LA; Fedorov DG; Ovchinnikov SG
    J Phys Chem A; 2008 Oct; 112(40):9955-64. PubMed ID: 18785695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple route to growth of silicon nanowires.
    Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation.
    Wang BC; Chou YM; Deng JP; Dung YT
    J Phys Chem A; 2008 Jul; 112(28):6351-7. PubMed ID: 18570356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor.
    Hu Y; Churchill HO; Reilly DJ; Xiang J; Lieber CM; Marcus CM
    Nat Nanotechnol; 2007 Oct; 2(10):622-5. PubMed ID: 18654386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic and passivation-dependent quantum confinement effects in germanium nanowires: a comparison with silicon nanowires.
    Jing M; Ni M; Song W; Lu J; Gao Z; Lai L; Mei WN; Yu D; Ye H; Wang L
    J Phys Chem B; 2006 Sep; 110(37):18332-7. PubMed ID: 16970454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity compatible with quantum confinement effect.
    Shin DH; Kim S; Kim JM; Jang CW; Kim JH; Lee KW; Kim J; Oh SD; Lee DH; Kang SS; Kim CO; Choi SH; Kim KJ
    Adv Mater; 2015 Apr; 27(16):2614-20. PubMed ID: 25776865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum devices: Nanowires charge towards integration.
    Eriksson MA; Friesen M
    Nat Nanotechnol; 2007 Oct; 2(10):595-6. PubMed ID: 18654378
    [No Abstract]   [Full Text] [Related]  

  • 8. A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires.
    Kang Z; Tsang CH; Zhang Z; Zhang M; Wong NB; Zapien JA; Shan Y; Lee ST
    J Am Chem Soc; 2007 May; 129(17):5326-7. PubMed ID: 17407292
    [No Abstract]   [Full Text] [Related]  

  • 9. Highly luminescent water-dispersible silicon nanowires for long-term immunofluorescent cellular imaging.
    He Y; Zhong Y; Peng F; Wei X; Su Y; Su S; Gu W; Liao L; Lee ST
    Angew Chem Int Ed Engl; 2011 Mar; 50(13):3080-3. PubMed ID: 21384480
    [No Abstract]   [Full Text] [Related]  

  • 10. Stability of singly hydrated silanone on silicon quantum dot surfaces: density functional simulations.
    Eyre RJ; Goss JP; MacLeod RM; Briddon PR
    Phys Chem Chem Phys; 2008 Aug; 10(30):4495-502. PubMed ID: 18654691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An atomistic model and key parameters for devising single molecular nanowire sensors.
    Lou P; Lee JY
    Phys Chem Chem Phys; 2008 Feb; 10(6):828-33. PubMed ID: 18231685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of atomic structure and elastic properties of branched silicon nanowires.
    Sorokin PB; Kvashnin AG; Kvashnin DG; Filicheva JA; Avramov PV; Fedorov AS; Chernozatonskii LA
    ACS Nano; 2010 May; 4(5):2784-90. PubMed ID: 20411911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of ionized impurity scattering on the thermopower of Si nanowires.
    Oh JH; Jang MG; Shin M
    J Phys Condens Matter; 2013 Dec; 25(50):505301. PubMed ID: 24219975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical reactions on surface molecules attached to silicon quantum dots.
    Shiohara A; Hanada S; Prabakar S; Fujioka K; Lim TH; Yamamoto K; Northcote PT; Tilley RD
    J Am Chem Soc; 2010 Jan; 132(1):248-53. PubMed ID: 20000400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of confinement on atomic and molecular reactivity indicators in DFT.
    Borgoo A; Tozer DJ; Geerlings P; De Proft F
    Phys Chem Chem Phys; 2008 Mar; 10(10):1406-10. PubMed ID: 18309396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide.
    Chang GR; Ma F; Ma DY; Xu KW
    Nanotechnology; 2010 Nov; 21(46):465605. PubMed ID: 20975214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The collagen assisted self-assembly of silicon nanowires.
    Salhi B; Vaurette F; Grandidier B; Stiévenard D; Melnyk O; Coffinier Y; Boukherroub R
    Nanotechnology; 2009 Jun; 20(23):235601. PubMed ID: 19451677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties.
    Xu X; Zhuang J; Wang X
    J Am Chem Soc; 2008 Sep; 130(37):12527-35. PubMed ID: 18715007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells.
    Claussen SA; Tasyurek E; Roth JE; Miller DA
    Opt Express; 2010 Dec; 18(25):25596-607. PubMed ID: 21164905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sized controlled synthesis, purification, and cell studies with silicon quantum dots.
    Shiohara A; Prabakar S; Faramus A; Hsu CY; Lai PS; Northcote PT; Tilley RD
    Nanoscale; 2011 Aug; 3(8):3364-70. PubMed ID: 21727983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.