These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18785761)

  • 1. Biological/biomedical accelerator mass spectrometry targets. 1. optimizing the CO2 reduction step using zinc dust.
    Kim SH; Kelly PB; Clifford AJ
    Anal Chem; 2008 Oct; 80(20):7651-60. PubMed ID: 18785761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological/biomedical accelerator mass spectrometry targets. 2. Physical, morphological, and structural characteristics.
    Kim SH; Kelly PB; Clifford AJ
    Anal Chem; 2008 Oct; 80(20):7661-9. PubMed ID: 18785762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality of graphite target for biological/biomedical/environmental applications of 14C-accelerator mass spectrometry.
    Kim SH; Kelly PB; Ortalan V; Browning ND; Clifford AJ
    Anal Chem; 2010 Mar; 82(6):2243-52. PubMed ID: 20163100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological and biomedical (14)C-accelerator mass spectrometry and graphitization of carbonaceous samples.
    Chung IM; Kim SH
    Analyst; 2013 Jun; 138(12):3347-55. PubMed ID: 23626987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerator mass spectrometry targets of submilligram carbonaceous samples using the high-throughput Zn reduction method.
    Kim SH; Kelly PB; Clifford AJ
    Anal Chem; 2009 Jul; 81(14):5949-54. PubMed ID: 19548665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry.
    Ognibene TJ; Bench G; Vogel JS; Peaslee GF; Murov S
    Anal Chem; 2003 May; 75(9):2192-6. PubMed ID: 12720362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attomole detection of 3H in biological samples using accelerator mass spectrometry: application in low-dose, dual-isotope tracer studies in conjunction with 14C accelerator mass spectrometry.
    Dingley KH; Roberts ML; Velsko CA; Turteltaub KW
    Chem Res Toxicol; 1998 Oct; 11(10):1217-22. PubMed ID: 9778319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of poly(butylene succinate) powder in a controlled compost at 58°C evaluated by naturally-occurring carbon 14 amounts in evolved CO(2) based on the ISO 14855-2 method.
    Kunioka M; Ninomiya F; Funabashi M
    Int J Mol Sci; 2009 Nov; 10(10):4267-4283. PubMed ID: 20057944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in biomedical applications of accelerator mass spectrometry.
    Hah SS; Henderson PT; Turteltaub KW
    J Biomed Sci; 2009 Jun; 16(1):54. PubMed ID: 19534792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerator mass spectrometry-enabled studies: current status and future prospects.
    Arjomand A
    Bioanalysis; 2010 Mar; 2(3):519-41. PubMed ID: 20440378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated combustion accelerator mass spectrometry for the analysis of biomedical samples in the low attomole range.
    van Duijn E; Sandman H; Grossouw D; Mocking JA; Coulier L; Vaes WH
    Anal Chem; 2014 Aug; 86(15):7635-41. PubMed ID: 25033319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-phase CO2 subtraction for improved measurements of the organic aerosol mass concentration and oxidation degree by an aerosol mass spectrometer.
    Collier S; Zhang Q
    Environ Sci Technol; 2013 Dec; 47(24):14324-31. PubMed ID: 24251785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An interface for direct analysis of (14)c in nonvolatile samples by accelerator mass spectrometry.
    Liberman RG; Tannenbaum SR; Hughey BJ; Shefer RE; Klinkowstein RE; Prakash C; Harriman SP; Skipper PL
    Anal Chem; 2004 Jan; 76(2):328-34. PubMed ID: 14719879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HPLC-Parallel accelerator and molecular mass spectrometry analysis of
    Baliu-Rodriguez D; Stewart BJ; Ognibene TJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2023 Feb; 1216():123590. PubMed ID: 36669256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA isolation and sample preparation for quantification of adduct levels by accelerator mass spectrometry.
    Dingley KH; Ubick EA; Vogel JS; Haack KW
    Methods Mol Biol; 2005; 291():21-7. PubMed ID: 15502208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subattomole sensitivity in biological accelerator mass spectrometry.
    Salehpour M; Possnert G; Bryhni H
    Anal Chem; 2008 May; 80(10):3515-21. PubMed ID: 18422337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerator mass spectrometry of small biological samples.
    Salehpour M; Forsgard N; Possnert G
    Rapid Commun Mass Spectrom; 2008 Dec; 22(23):3928-34. PubMed ID: 18980253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.
    Barker J; Garner RC
    Rapid Commun Mass Spectrom; 1999; 13(4):285-93. PubMed ID: 10097404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon isotopes profiles of human whole blood, plasma, red blood cells, urine and feces for biological/biomedical 14C-accelerator mass spectrometry applications.
    Kim SH; Chuang JC; Kelly PB; Clifford AJ
    Anal Chem; 2011 May; 83(9):3312-8. PubMed ID: 21452856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of [
    Dahl K; Ulin J; Schou M; Halldin C
    J Labelled Comp Radiopharm; 2017 Nov; 60(13):624-628. PubMed ID: 28868618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.