These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 18786181)

  • 1. A conserved mechanism for nitrile metabolism in bacteria and plants.
    Howden AJ; Harrison CJ; Preston GM
    Plant J; 2009 Jan; 57(2):243-53. PubMed ID: 18786181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis.
    O'Leary B; Preston GM; Sweetlove LJ
    Mol Plant; 2014 Jan; 7(1):231-43. PubMed ID: 23825089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase.
    Piotrowski M; Schönfelder S; Weiler EW
    J Biol Chem; 2001 Jan; 276(4):2616-21. PubMed ID: 11060302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative Pathway for 3-Cyanoalanine Assimilation in Pseudomonas pseudoalcaligenes CECT5344 under Noncyanotrophic Conditions.
    Pérez MD; Olaya-Abril A; Cabello P; Sáez LP; Roldán MD; Moreno-Vivián C; Luque-Almagro VM
    Microbiol Spectr; 2021 Dec; 9(3):e0077721. PubMed ID: 34730416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanide metabolism in higher plants: cyanoalanine hydratase is a NIT4 homolog.
    Piotrowski M; Volmer JJ
    Plant Mol Biol; 2006 May; 61(1-2):111-22. PubMed ID: 16786295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary or secondary? Versatile nitrilases in plant metabolism.
    Piotrowski M
    Phytochemistry; 2008 Nov; 69(15):2655-67. PubMed ID: 18842274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Jones J; Studholme DJ; Knight CG; Preston GM
    Environ Microbiol; 2007 Dec; 9(12):3046-64. PubMed ID: 17991033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa.
    Günther J; Irmisch S; Lackus ND; Reichelt M; Gershenzon J; Köllner TG
    BMC Plant Biol; 2018 Oct; 18(1):251. PubMed ID: 30348089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana.
    Kutz A; Müller A; Hennig P; Kaiser WM; Piotrowski M; Weiler EW
    Plant J; 2002 Apr; 30(1):95-106. PubMed ID: 11967096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of nitrilases in glucosinolate-containing plants.
    Janowitz T; Trompetter I; Piotrowski M
    Phytochemistry; 2009; 70(15-16):1680-6. PubMed ID: 19698961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of a novel nitrilase from Pseudomonas fluorescens Pf-5.
    Kim JS; Tiwari MK; Moon HJ; Jeya M; Ramu T; Oh DK; Kim IW; Lee JK
    Appl Microbiol Biotechnol; 2009 May; 83(2):273-83. PubMed ID: 19153727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cyanide-Induced 3-Cyanoalanine Nitrilase in the Cyanide-Assimilating Bacterium Pseudomonas pseudoalcaligenes Strain CECT 5344.
    Acera F; Carmona MI; Castillo F; Quesada A; Blasco R
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235872
    [No Abstract]   [Full Text] [Related]  

  • 13. Genetic characterization of Pseudomonas fluorescens SBW25 rsp gene expression in the phytosphere and in vitro.
    Jackson RW; Preston GM; Rainey PB
    J Bacteriol; 2005 Dec; 187(24):8477-88. PubMed ID: 16321952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Environ Microbiol; 2008 Dec; 10(12):3284-94. PubMed ID: 18707611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis.
    Kriechbaumer V; Park WJ; Piotrowski M; Meeley RB; Gierl A; Glawischnig E
    J Exp Bot; 2007; 58(15-16):4225-33. PubMed ID: 18182427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism.
    Jenrich R; Trompetter I; Bak S; Olsen CE; Møller BL; Piotrowski M
    Proc Natl Acad Sci U S A; 2007 Nov; 104(47):18848-53. PubMed ID: 18003897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrile-synthesizing enzyme: Gene cloning, overexpression and application for the production of useful compounds.
    Kumano T; Takizawa Y; Shimizu S; Kobayashi M
    J Gen Appl Microbiol; 2016 Sep; 62(4):174-80. PubMed ID: 27250664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25.
    Preston GM; Bertrand N; Rainey PB
    Mol Microbiol; 2001 Sep; 41(5):999-1014. PubMed ID: 11555282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a novel nonantibiotic triple marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter wheat in the field.
    Jäderlund L; Hellman M; Sundh I; Bailey MJ; Jansson JK
    FEMS Microbiol Ecol; 2008 Feb; 63(2):156-68. PubMed ID: 18093144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression.
    Kochar M; Upadhyay A; Srivastava S
    Res Microbiol; 2011 May; 162(4):426-35. PubMed ID: 21397014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.