BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 18786273)

  • 1. Meta-population structure in a coral reef fish demonstrated by genetic data on patterns of migration, extinction and re-colonisation.
    Bay LK; Caley MJ; Crozier RH
    BMC Evol Biol; 2008 Sep; 8():248. PubMed ID: 18786273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersal in the spiny damselfish, Acanthochromis polyacanthus, a coral reef fish species without a larval pelagic stage.
    Miller-Sims VC; Gerlach G; Kingsford MJ; Atema J
    Mol Ecol; 2008 Dec; 17(23):5036-48. PubMed ID: 19120989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductions in the mitochondrial DNA diversity of coral reef fish provide evidence of population bottlenecks resulting from Holocene sea-level change.
    Fauvelot C; Bernardi G; Planes S
    Evolution; 2003 Jul; 57(7):1571-83. PubMed ID: 12940362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong genetic divergence among populations of a marine fish with limited dispersal, Acanthochromis polyacanthus, within the Great Barrier Reef and the Coral Sea.
    Planes S; Doherty PJ; Bernardi G
    Evolution; 2001 Nov; 55(11):2263-73. PubMed ID: 11794786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.
    Lukoschek V; Riginos C; van Oppen MJ
    Mol Ecol; 2016 Jul; 25(13):3065-80. PubMed ID: 27085309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seascape continuity plays an important role in determining patterns of spatial genetic structure in a coral reef fish.
    D'Aloia CC; Bogdanowicz SM; Harrison RG; Buston PM
    Mol Ecol; 2014 Jun; 23(12):2902-13. PubMed ID: 24803419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent patterns of population genetic structure for a coral reef community.
    Selkoe KA; Gaggiotti OE; Bowen BW; Toonen RJ;
    Mol Ecol; 2014 Jun; 23(12):3064-79. PubMed ID: 24866831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Living in the past: phylogeography and population histories of Indo-Pacific wrasses (genus Halichoeres) in shallow lagoons versus outer reef slopes.
    Ludt WB; Bernal MA; Bowen BW; Rocha LA
    PLoS One; 2012; 7(6):e38042. PubMed ID: 22701597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High gene flow across large geographic scales reduces extinction risk for a highly specialised coral feeding butterflyfish.
    Lawton RJ; Messmer V; Pratchett MS; Bay LK
    Mol Ecol; 2011 Sep; 20(17):3584-98. PubMed ID: 21806692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term panmixia in a cosmopolitan Indo-Pacific coral reef fish and a nebulous genetic boundary with its broadly sympatric sister species.
    Horne JB; van Herwerden L
    J Evol Biol; 2013 Apr; 26(4):783-99. PubMed ID: 23305496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Algal turf sediments limit the spatial extent of function delivery on coral reefs.
    Tebbett SB; Goatley CHR; Streit RP; Bellwood DR
    Sci Total Environ; 2020 Sep; 734():139422. PubMed ID: 32460082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia.
    van Oppen MJ; Bongaerts P; Underwood JN; Peplow LM; Cooper TF
    Mol Ecol; 2011 Apr; 20(8):1647-60. PubMed ID: 21410573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic population structure of the endemic fourline wrasse (Larabicus quadrilineatus) suggests limited larval dispersal distances in the Red Sea.
    Froukh T; Kochzius M
    Mol Ecol; 2007 Apr; 16(7):1359-67. PubMed ID: 17391261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weak genetic structure indicates strong dispersal limits: a tale of two coral reef fish.
    Purcell JF; Cowen RK; Hughes CR; Williams DA
    Proc Biol Sci; 2006 Jun; 273(1593):1483-90. PubMed ID: 16777742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability in the functional composition of coral reef fish communities on submerged and emergent reefs in the central Great Barrier Reef, Australia.
    Cooper AM; MacDonald C; Roberts TE; Bridge TCL
    PLoS One; 2019; 14(5):e0216785. PubMed ID: 31100087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea.
    Nanninga GB; Saenz-Agudelo P; Manica A; Berumen ML
    Mol Ecol; 2014 Feb; 23(3):591-602. PubMed ID: 24320929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park.
    Williamson DH; Harrison HB; Almany GR; Berumen ML; Bode M; Bonin MC; Choukroun S; Doherty PJ; Frisch AJ; Saenz-Agudelo P; Jones GP
    Mol Ecol; 2016 Dec; 25(24):6039-6054. PubMed ID: 27862567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algal Turf Sediments and Sediment Production by Parrotfishes across the Continental Shelf of the Northern Great Barrier Reef.
    Tebbett SB; Goatley CH; Bellwood DR
    PLoS One; 2017; 12(1):e0170854. PubMed ID: 28122042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oceanic interchange and nonequilibrium population structure in the estuarine dependent Indo-Pacific tasselfish, Polynemus sheridani.
    Chenoweth SF; Hughes JM
    Mol Ecol; 2003 Sep; 12(9):2387-97. PubMed ID: 12919476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs.
    Mumby PJ
    Ecol Appl; 2006 Apr; 16(2):747-69. PubMed ID: 16711060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.