BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 18786543)

  • 1. Characterization of protein fold by wide-angle X-ray solution scattering.
    Makowski L; Rodi DJ; Mandava S; Devarapalli S; Fischetti RF
    J Mol Biol; 2008 Nov; 383(3):731-44. PubMed ID: 18786543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein structure prediction constrained by solution X-ray scattering data and structural homology identification.
    Zheng W; Doniach S
    J Mol Biol; 2002 Feb; 316(1):173-87. PubMed ID: 11829511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast method to sample real protein conformational space.
    Feldman HJ; Hogue CW
    Proteins; 2000 May; 39(2):112-31. PubMed ID: 10737933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated unfolded-state ensemble and the experimental NMR structures of villin headpiece yield similar wide-angle solution X-ray scattering profiles.
    Zagrovic B; Pande VS
    J Am Chem Soc; 2006 Sep; 128(36):11742-3. PubMed ID: 16953598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A database method for automated map interpretation in protein crystallography.
    Diller DJ; Redinbo MR; Pohl E; Hol WG
    Proteins; 1999 Sep; 36(4):526-41. PubMed ID: 10450094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Old fold in a new X-ray diffraction dataset? Low-resolution molecular replacement using representative structural templates can provide phase information.
    Rajavel M; Warrier T; Gopal B
    Proteins; 2006 Sep; 64(4):923-30. PubMed ID: 16786600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide-angle X-ray solution scattering as a probe of ligand-induced conformational changes in proteins.
    Fischetti RF; Rodi DJ; Gore DB; Makowski L
    Chem Biol; 2004 Oct; 11(10):1431-43. PubMed ID: 15489170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact patterns between helices and strands of sheet define protein folding patterns.
    Kamat AP; Lesk AM
    Proteins; 2007 Mar; 66(4):869-76. PubMed ID: 17206659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azospirillum irakense pectate lyase displays a toroidal fold.
    Novoa De Armas H; Verboven C; De Ranter C; Desair J; Vande Broek A; Vanderleyden J; Rabijns A
    Acta Crystallogr D Biol Crystallogr; 2004 Jun; 60(Pt 6):999-1007. PubMed ID: 15159558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of multiple well defined conformations on small-angle scattering of proteins in solution.
    Heller WT
    Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):33-44. PubMed ID: 15608373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsically stable secondary structure elements of proteins: a comprehensive study of folding units of proteins by computation and by analysis of data determined by X-ray crystallography.
    Perczel A; Jákli I; Csizmadia IG
    Chemistry; 2003 Nov; 9(21):5332-42. PubMed ID: 14613143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of a protein fold recognition method that takes into account four physicochemical properties: side-chain packing, solvation, hydrogen-bonding, and local conformation.
    Matsuo Y; Nishikawa K
    Proteins; 1995 Nov; 23(3):370-5. PubMed ID: 8710829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of protein form with X-ray solution scattering and a genetic algorithm.
    Chacón P; Díaz JF; Morán F; Andreu JM
    J Mol Biol; 2000 Jun; 299(5):1289-302. PubMed ID: 10873453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cataloging topologies of protein folding patterns.
    Konagurthu AS; Lesk AM
    J Mol Recognit; 2010; 23(2):253-7. PubMed ID: 20151416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native atomic burials, supplemented by physically motivated hydrogen bond constraints, contain sufficient information to determine the tertiary structure of small globular proteins.
    Pereira de Araújo AF; Gomes AL; Bursztyn AA; Shakhnovich EI
    Proteins; 2008 Feb; 70(3):971-83. PubMed ID: 17847091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the three-dimensional fold of a protein from approximate constraints: a simulation study.
    Soman KV; Braun W
    Cell Biochem Biophys; 2001; 34(3):283-304. PubMed ID: 11898858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing protein structures with a non-local atomic interaction energy.
    Melo F; Feytmans E
    J Mol Biol; 1998 Apr; 277(5):1141-52. PubMed ID: 9571028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3- Instead of 4-helix formation in a de novo designed protein in solution revealed by small-angle X-ray scattering.
    Høiberg-Nielsen R; Tofteng Shelton AP; Sørensen KK; Roessle M; Svergun DI; Thulstrup PW; Jensen KJ; Arleth L
    Chembiochem; 2008 Nov; 9(16):2663-72. PubMed ID: 18850602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delineation of protein structure classes from multivariate analysis of protein Raman optical activity data.
    Zhu F; Tranter GE; Isaacs NW; Hecht L; Barron LD
    J Mol Biol; 2006 Oct; 363(1):19-26. PubMed ID: 16962609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein topology classification using two-stage support vector machines.
    Gubbi J; Shilton A; Parker M; Palaniswami M
    Genome Inform; 2006; 17(2):259-69. PubMed ID: 17503398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.