BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 18786543)

  • 21. Comprehensive description of protein structures using protein folding shape code.
    Yang J
    Proteins; 2008 May; 71(3):1497-518. PubMed ID: 18214949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Description and recognition of regular and distorted secondary structures in proteins using the automated protein structure analysis method.
    Ranganathan S; Izotov D; Kraka E; Cremer D
    Proteins; 2009 Aug; 76(2):418-38. PubMed ID: 19205025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An automated classification of the structure of protein loops.
    Oliva B; Bates PA; Querol E; Avilés FX; Sternberg MJ
    J Mol Biol; 1997 Mar; 266(4):814-30. PubMed ID: 9102471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical map of protein unfolding and refolding at thermal equilibrium revealed by wide-angle X-ray scattering.
    Hirai M; Koizumi M; Hayakawa T; Takahashi H; Abe S; Hirai H; Miura K; Inoue K
    Biochemistry; 2004 Jul; 43(28):9036-49. PubMed ID: 15248761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The content of alpha-helix and beta-structure in proteins crystallized at different pH values].
    Shestopalov BV
    Biofizika; 2007; 52(5):804-11. PubMed ID: 17969912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein structure comparison: implications for the nature of 'fold space', and structure and function prediction.
    Kolodny R; Petrey D; Honig B
    Curr Opin Struct Biol; 2006 Jun; 16(3):393-8. PubMed ID: 16678402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A protein folding degree measure and its dependence on crystal packing, protein size, secondary structure, and domain structural class.
    Estrada E
    J Chem Inf Comput Sci; 2004; 44(4):1238-50. PubMed ID: 15272831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrophobic clusters in protein structures.
    Arunachalam J; Gautham N
    Proteins; 2008 Jun; 71(4):2012-25. PubMed ID: 18186486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography.
    Tsutakawa SE; Hura GL; Frankel KA; Cooper PK; Tainer JA
    J Struct Biol; 2007 May; 158(2):214-23. PubMed ID: 17182256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative view at comprehensive information resources on three-dimensional structures of biological macro-molecules.
    Hühne R; Koch FT; Sühnel J
    Brief Funct Genomic Proteomic; 2007 Sep; 6(3):220-39. PubMed ID: 17956938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. What Can We Learn from Wide-Angle Solution Scattering?
    Wang Y; Zhou H; Onuk E; Badger J; Makowski L
    Adv Exp Med Biol; 2017; 1009():131-147. PubMed ID: 29218557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative organization of the known protein x-ray structures. I. Methods and short-length-scale results.
    Rackovsky S
    Proteins; 1990; 7(4):378-402. PubMed ID: 2381907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-space protein-model completion: an inverse-kinematics approach.
    van den Bedem H; Lotan I; Latombe JC; Deacon AM
    Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):2-13. PubMed ID: 15608370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers.
    Kreplak L; Doucet J; Briki F
    Biopolymers; 2001 Apr; 58(5):526-33. PubMed ID: 11241224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlation to protein conformation of Wide-angle X-ray Scatter parameters.
    Elshemey WM; Elfiky AA; Gawad WA
    Protein J; 2010 Nov; 29(8):545-50. PubMed ID: 21046443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [A comparison of X-ray diffraction analysis and nuclear magnetic resonance from the data on the identification of alpha-helices and beta-strands in the same proteins].
    Shestopalov BV
    Biofizika; 2005; 50(6):998-1001. PubMed ID: 16358777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secondary structure determination of proteins in aqueous solution by infrared spectroscopy: a comparison of multivariate data analysis methods.
    Rahmelow K; Hübner W
    Anal Biochem; 1996 Oct; 241(1):5-13. PubMed ID: 8921157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mining super-secondary structure motifs from 3d protein structures: a sequence order independent approach.
    Aung Z; Li J
    Genome Inform; 2007; 19():15-26. PubMed ID: 18546501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G
    Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MIMUMBA revisited: torsion angle rules for conformer generation derived from X-ray structures.
    Sadowski J; Boström J
    J Chem Inf Model; 2006; 46(6):2305-9. PubMed ID: 17125173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.