BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 18786611)

  • 1. Glucosensing in an immortalized adrenomedullary chromaffin cell line: role of ATP-sensitive K+ channels.
    Piskuric NA; Brown ST; Zhang M; Nurse CA
    Neurosci Lett; 2008 Nov; 445(1):94-8. PubMed ID: 18786611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an ATP-sensitive K(+) channel in rat carotid body glomus cells.
    Kim D; Kim I; Papreck JR; Donnelly DF; Carroll JL
    Respir Physiol Neurobiol; 2011 Aug; 177(3):247-55. PubMed ID: 21536154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic nicotine blunts hypoxic sensitivity in perinatal rat adrenal chromaffin cells via upregulation of KATP channels: role of alpha7 nicotinic acetylcholine receptor and hypoxia-inducible factor-2alpha.
    Buttigieg J; Brown S; Holloway AC; Nurse CA
    J Neurosci; 2009 Jun; 29(22):7137-47. PubMed ID: 19494136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of K(ATP)-channels in rat basilar and middle cerebral arteries: studies of vasomotor responses and mRNA expression.
    Jansen-Olesen I; Mortensen CH; El-Bariaki N; Ploug KB
    Eur J Pharmacol; 2005 Oct; 523(1-3):109-18. PubMed ID: 16226739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity of repaglinide and glibenclamide for the pancreatic over the cardiovascular K(ATP) channels.
    Stephan D; Winkler M; Kühner P; Russ U; Quast U
    Diabetologia; 2006 Sep; 49(9):2039-48. PubMed ID: 16865362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An abundant, truncated human sulfonylurea receptor 1 splice variant has prodiabetic properties and impairs sulfonylurea action.
    Schmid D; Stolzlechner M; Sorgner A; Bentele C; Assinger A; Chiba P; Moeslinger T
    Cell Mol Life Sci; 2012 Jan; 69(1):129-48. PubMed ID: 21671119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the bipartite model of the sulfonylurea receptor binding site: binding of A-, B-, and A + B-site ligands.
    Winkler M; Stephan D; Bieger S; Kühner P; Wolff F; Quast U
    J Pharmacol Exp Ther; 2007 Aug; 322(2):701-8. PubMed ID: 17495126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ontogeny of sulphonylurea-binding regulatory subunits of K(ATP) channels in the pregnant rat myometrium].
    Lovász N; Ducza E; Gáspár R; Falkay G
    Acta Pharm Hung; 2011; 81(3):101-7. PubMed ID: 22165413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis and characteristics of KATP channel in human corporal smooth muscle cells.
    Insuk SO; Chae MR; Choi JW; Yang DK; Sim JH; Lee SW
    Int J Impot Res; 2003 Aug; 15(4):258-66. PubMed ID: 12934053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kir6.2-dependent high-affinity repaglinide binding to beta-cell K(ATP) channels.
    Hansen AM; Hansen JB; Carr RD; Ashcroft FM; Wahl P
    Br J Pharmacol; 2005 Feb; 144(4):551-7. PubMed ID: 15678092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase C-epsilon induces caveolin-dependent internalization of vascular adenosine 5'-triphosphate-sensitive K+ channels.
    Jiao J; Garg V; Yang B; Elton TS; Hu K
    Hypertension; 2008 Sep; 52(3):499-506. PubMed ID: 18663158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KATP channels in mouse spermatogenic cells and sperm, and their role in capacitation.
    Acevedo JJ; Mendoza-Lujambio I; de la Vega-Beltrán JL; Treviño CL; Felix R; Darszon A
    Dev Biol; 2006 Jan; 289(2):395-405. PubMed ID: 16343479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in the mechanism of metabolic regulation of ATP-sensitive K+ channels containing Kir6.1 and Kir6.2 subunits.
    Farzaneh T; Tinker A
    Cardiovasc Res; 2008 Sep; 79(4):621-31. PubMed ID: 18522960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incomplete dissociation of glibenclamide from wild-type and mutant pancreatic K ATP channels limits their recovery from inhibition.
    Russ U; Kühner P; Prager R; Stephan D; Bryan J; Quast U
    Br J Pharmacol; 2009 Jan; 156(2):354-61. PubMed ID: 19154434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remodelling of the SUR-Kir6.2 interface of the KATP channel upon ATP binding revealed by the conformational blocker rhodamine 123.
    Hosy E; Dérand R; Revilloud J; Vivaudou M
    J Physiol; 2007 Jul; 582(Pt 1):27-39. PubMed ID: 17510180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased expression of aortic KIR6.1 and SUR2B in hypertension does not correlate with changes in the functional role of K(ATP) channels.
    Blanco-Rivero J; Gamallo C; Aras-López R; Cobeño L; Cogolludo A; Pérez-Vizcaino F; Ferrer M; Balfagon G
    Eur J Pharmacol; 2008 Jun; 587(1-3):204-8. PubMed ID: 18471810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of Kir6.2-SUR1 currents, in the absence and presence of sodium azide, to the K(ATP) channel inhibitors, ciclazindol and englitazone.
    McKay NG; Kinsella JM; Campbell CM; Ashford ML
    Br J Pharmacol; 2000 Jun; 130(4):857-66. PubMed ID: 10864893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogeny of sulfonylurea-binding regulatory subunits of K(ATP) channels in the pregnant rat myometrium.
    Lovasz N; Ducza E; Gaspar R; Falkay G
    Reproduction; 2011 Jul; 142(1):175-81. PubMed ID: 21527399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K ATP channels of primary human coronary artery endothelial cells consist of a heteromultimeric complex of Kir6.1, Kir6.2, and SUR2B subunits.
    Yoshida H; Feig JE; Morrissey A; Ghiu IA; Artman M; Coetzee WA
    J Mol Cell Cardiol; 2004 Oct; 37(4):857-69. PubMed ID: 15380676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling by (--)-epigallocatechin-3-gallate of ATP-sensitive potassium channels from phosphatidylinositol polyphosphates and ATP.
    Jin JY; Park SH; Bae JH; Cho HC; Lim JG; Park WS; Han J; Lee JH; Song DK
    Pharmacol Res; 2007 Sep; 56(3):237-47. PubMed ID: 17656102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.