BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 18786649)

  • 1. The ubiquitination of ribosomal S6 kinases is independent from the mitogen-induced phosphorylation/activation of the kinase.
    Gwalter J; Wang ML; Gout I
    Int J Biochem Cell Biol; 2009 Apr; 41(4):828-33. PubMed ID: 18786649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of ribosomal protein S6 kinases by ubiquitination.
    Wang ML; Panasyuk G; Gwalter J; Nemazanyy I; Fenton T; Filonenko V; Gout I
    Biochem Biophys Res Commun; 2008 May; 369(2):382-7. PubMed ID: 18280803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receptor association and tyrosine phosphorylation of S6 kinases.
    Rebholz H; Panasyuk G; Fenton T; Nemazanyy I; Valovka T; Flajolet M; Ronnstrand L; Stephens L; West A; Gout IT
    FEBS J; 2006 May; 273(9):2023-36. PubMed ID: 16640565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone acetyltransferases interact with and acetylate p70 ribosomal S6 kinases in vitro and in vivo.
    Fenton TR; Gwalter J; Ericsson J; Gout IT
    Int J Biochem Cell Biol; 2010 Feb; 42(2):359-66. PubMed ID: 19961954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of S6K2, a novel kinase homologous to S6K1.
    Lee-Fruman KK; Kuo CJ; Lippincott J; Terada N; Blenis J
    Oncogene; 1999 Sep; 18(36):5108-14. PubMed ID: 10490847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal S6 kinase signaling and the control of translation.
    Dufner A; Thomas G
    Exp Cell Res; 1999 Nov; 253(1):100-9. PubMed ID: 10579915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomal protein S6 kinase 1 interacts with and is ubiquitinated by ubiquitin ligase ROC1.
    Panasyuk G; Nemazanyy I; Filonenko V; Gout I
    Biochem Biophys Res Commun; 2008 May; 369(2):339-43. PubMed ID: 18279656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an activated ribosomal S6 kinase variant from maturing sea star oocytes: association with phosphatase 2A and substrate specificity.
    Charlton LA; Sayed M; Clark-Lewis I; Aebersold R; Pelech SL
    J Cell Biochem; 1999 Nov; 75(2):310-26. PubMed ID: 10502303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific interaction between S6K1 and CoA synthase: a potential link between the mTOR/S6K pathway, CoA biosynthesis and energy metabolism.
    Nemazanyy I; Panasyuk G; Zhyvoloup A; Panayotou G; Gout IT; Filonenko V
    FEBS Lett; 2004 Dec; 578(3):357-62. PubMed ID: 15589845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of a constitutively T-loop phosphorylated and active recombinant S6K1: expression, purification, and enzymatic studies in a high capacity non-radioactive TR-FRET Lance assay.
    Zhang WG; Shor B; Yu K
    Protein Expr Purif; 2006 Apr; 46(2):414-20. PubMed ID: 16213157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the general transcription factor Yin Yang 1 as a novel and specific binding partner for S6 kinase 2.
    Ismail HM; Myronova O; Tsuchiya Y; Niewiarowski A; Tsaneva I; Gout I
    Cell Signal; 2013 May; 25(5):1054-63. PubMed ID: 23403125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosomal S6 kinase 2 inhibition by a potent C-terminal repressor domain is relieved by mitogen-activated protein-extracellular signal-regulated kinase kinase-regulated phosphorylation.
    Martin KA; Schalm SS; Romanelli A; Keon KL; Blenis J
    J Biol Chem; 2001 Mar; 276(11):7892-8. PubMed ID: 11108720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mTOR, translation initiation and cancer.
    Mamane Y; Petroulakis E; LeBacquer O; Sonenberg N
    Oncogene; 2006 Oct; 25(48):6416-22. PubMed ID: 17041626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IGF-1-stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways.
    Bibollet-Bahena O; Almazan G
    J Neurochem; 2009 Jun; 109(5):1440-51. PubMed ID: 19453943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of amino acids on glucose metabolism of isolated rat skeletal muscle are independent of insulin and the mTOR/S6K pathway.
    Stadlbauer K; Brunmair B; Szöcs Z; Krebs M; Luger A; Fürnsinn C
    Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E785-92. PubMed ID: 19622787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of ubiquitin in NF-kappaB regulatory pathways.
    Skaug B; Jiang X; Chen ZJ
    Annu Rev Biochem; 2009; 78():769-96. PubMed ID: 19489733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Features of fibronectin-dependent activation of ribosomal protein S6 kinase (S6K1 and S6K2)].
    Val'ovka TI; Filonenko VV; Velykyï MM; Drobot LB; Voterfill M; Matsuka HKh; Hut IT
    Ukr Biokhim Zh (1999); 2000; 72(3):31-7. PubMed ID: 11200472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of cAMP-dependent kinase as a third in vivo ribosomal protein S6 kinase in pancreatic beta-cells.
    Moore CE; Xie J; Gomez E; Herbert TP
    J Mol Biol; 2009 Jun; 389(3):480-94. PubMed ID: 19376132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HSP27 regulates IL-1 stimulated IKK activation through interacting with TRAF6 and affecting its ubiquitination.
    Wu Y; Liu J; Zhang Z; Huang H; Shen J; Zhang S; Jiang Y; Luo L; Yin Z
    Cell Signal; 2009 Jan; 21(1):143-50. PubMed ID: 18950704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation and degradation of S6K1 (p70S6K1) in response to persistent JNK1 Activation.
    Zhang J; Gao Z; Ye J
    Biochim Biophys Acta; 2013 Dec; 1832(12):1980-8. PubMed ID: 23816567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.