These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 18786795)
1. Pattern recognition system for the discrimination of multiple sclerosis from cerebral microangiopathy lesions based on texture analysis of magnetic resonance images. Theocharakis P; Glotsos D; Kalatzis I; Kostopoulos S; Georgiadis P; Sifaki K; Tsakouridou K; Malamas M; Delibasis G; Cavouras D; Nikiforidis G Magn Reson Imaging; 2009 Apr; 27(3):417-22. PubMed ID: 18786795 [TBL] [Abstract][Full Text] [Related]
2. Texture analysis for tissue discrimination on T1-weighted MR images of the knee joint in a multicenter study: Transferability of texture features and comparison of feature selection methods and classifiers. Mayerhoefer ME; Breitenseher MJ; Kramer J; Aigner N; Hofmann S; Materka A J Magn Reson Imaging; 2005 Nov; 22(5):674-80. PubMed ID: 16215966 [TBL] [Abstract][Full Text] [Related]
3. A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images. Khayati R; Vafadust M; Towhidkhah F; Nabavi SM Comput Med Imaging Graph; 2008 Mar; 32(2):124-33. PubMed ID: 18055174 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: False positive reduction scheme consisted of rule-based, level set method, and support vector machine. Yamamoto D; Arimura H; Kakeda S; Magome T; Yamashita Y; Toyofuku F; Ohki M; Higashida Y; Korogi Y Comput Med Imaging Graph; 2010 Jul; 34(5):404-13. PubMed ID: 20189353 [TBL] [Abstract][Full Text] [Related]
5. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. Juntu J; Sijbers J; De Backer S; Rajan J; Van Dyck D J Magn Reson Imaging; 2010 Mar; 31(3):680-9. PubMed ID: 20187212 [TBL] [Abstract][Full Text] [Related]
6. MRI texture analysis in multiple sclerosis: toward a clinical analysis protocol. Harrison LC; Raunio M; Holli KK; Luukkaala T; Savio S; Elovaara I; Soimakallio S; Eskola HJ; Dastidar P Acad Radiol; 2010 Jun; 17(6):696-707. PubMed ID: 20457414 [TBL] [Abstract][Full Text] [Related]
7. Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study. Mayerhoefer ME; Szomolanyi P; Jirak D; Berg A; Materka A; Dirisamer A; Trattnig S Invest Radiol; 2009 Jul; 44(7):405-11. PubMed ID: 19465863 [TBL] [Abstract][Full Text] [Related]
8. A computer-aided diagnostic system to discriminate SPIO-enhanced magnetic resonance hepatocellular carcinoma by a neural network classifier. Guo D; Qiu T; Bian J; Kang W; Zhang L Comput Med Imaging Graph; 2009 Dec; 33(8):588-92. PubMed ID: 19656655 [TBL] [Abstract][Full Text] [Related]
9. Automated computer differential classification in Parkinsonian Syndromes via pattern analysis on MRI. Duchesne S; Rolland Y; Vérin M Acad Radiol; 2009 Jan; 16(1):61-70. PubMed ID: 19064213 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of suspicious nipple discharge by magnetic resonance mammography based on breast imaging reporting and data system magnetic resonance imaging descriptors. Tokuda Y; Kuriyama K; Nakamoto A; Choi S; Yutani K; Kunitomi Y; Haneda T; Kawai M; Masuda N; Takeda M; Nakamura H J Comput Assist Tomogr; 2009; 33(1):58-62. PubMed ID: 19188786 [TBL] [Abstract][Full Text] [Related]
11. Generation of connectivity-preserving surface models of multiple sclerosis lesions. Meruvia-Pastor O; Xiao M; Soh J; Sensen CW Stud Health Technol Inform; 2011; 163():359-65. PubMed ID: 21335819 [TBL] [Abstract][Full Text] [Related]
12. A wavelet-based optimal texture feature set for classification of brain tumours. Sasikala M; Kumaravel N J Med Eng Technol; 2008; 32(3):198-205. PubMed ID: 18432467 [TBL] [Abstract][Full Text] [Related]
13. Voxel-based iterative sensitivity (VBIS) analysis: methods and a validation of intensity scaling for T2-weighted imaging of hippocampal sclerosis. Abbott DF; Pell GS; Pardoe H; Jackson GD Neuroimage; 2009 Feb; 44(3):812-9. PubMed ID: 18996207 [TBL] [Abstract][Full Text] [Related]
14. An approach to comparing accuracies of two FLAIR MR sequences in the detection of multiple sclerosis lesions in the brain in the absence of gold standard. Bilello M; Suri N; Krejza J; Woo JH; Bagley LJ; Mamourian AC; Vossough A; Chen JY; Millian BR; Mulderink T; Markowitz CE; Melhem ER Acad Radiol; 2010 Jun; 17(6):686-95. PubMed ID: 20457413 [TBL] [Abstract][Full Text] [Related]
15. Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods. Georgiadis P; Cavouras D; Kalatzis I; Glotsos D; Athanasiadis E; Kostopoulos S; Sifaki K; Malamas M; Nikiforidis G; Solomou E Magn Reson Imaging; 2009 Jan; 27(1):120-30. PubMed ID: 18602785 [TBL] [Abstract][Full Text] [Related]
16. Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression? Bergouignan L; Chupin M; Czechowska Y; Kinkingnéhun S; Lemogne C; Le Bastard G; Lepage M; Garnero L; Colliot O; Fossati P Neuroimage; 2009 Mar; 45(1):29-37. PubMed ID: 19071222 [TBL] [Abstract][Full Text] [Related]
17. Differentiation of common large sellar-suprasellar masses effect of artificial neural network on radiologists' diagnosis performance. Kitajima M; Hirai T; Katsuragawa S; Okuda T; Fukuoka H; Sasao A; Akter M; Awai K; Nakayama Y; Ikeda R; Yamashita Y; Yano S; Kuratsu J; Doi K Acad Radiol; 2009 Mar; 16(3):313-20. PubMed ID: 19201360 [TBL] [Abstract][Full Text] [Related]
18. Are signal intensity and homogeneity useful parameters for distinguishing between benign and malignant soft tissue masses on MR images? Objective evaluation by means of texture analysis. Mayerhoefer ME; Breitenseher M; Amann G; Dominkus M Magn Reson Imaging; 2008 Nov; 26(9):1316-22. PubMed ID: 18448302 [TBL] [Abstract][Full Text] [Related]
19. Characterization of breast cancer types by texture analysis of magnetic resonance images. Holli K; Lääperi AL; Harrison L; Luukkaala T; Toivonen T; Ryymin P; Dastidar P; Soimakallio S; Eskola H Acad Radiol; 2010 Feb; 17(2):135-41. PubMed ID: 19945302 [TBL] [Abstract][Full Text] [Related]
20. Textures in magnetic resonance images of the ischemic rat brain treated with an anti-inflammatory agent. Chen G; Strzelecki M; Pang Q; Kim H; Stødkilde-Jørgensen H Clin Imaging; 2010; 34(1):7-13. PubMed ID: 20122513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]