BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 18787135)

  • 21. The cause of carbon isotope minimum events on glacial terminations.
    Spero HJ; Lea DW
    Science; 2002 Apr; 296(5567):522-5. PubMed ID: 11964477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation.
    Visser K; Thunell R; Stott L
    Nature; 2003 Jan; 421(6919):152-5. PubMed ID: 12520298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.
    Martínez-Botí MA; Marino G; Foster GL; Ziveri P; Henehan MJ; Rae JW; Mortyn PG; Vance D
    Nature; 2015 Feb; 518(7538):219-22. PubMed ID: 25673416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid subtropical North Atlantic salinity oscillations across Dansgaard-Oeschger cycles.
    Schmidt MW; Vautravers MJ; Spero HJ
    Nature; 2006 Oct; 443(7111):561-4. PubMed ID: 17024090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean.
    Gupta AK; Anderson DM; Overpeck JT
    Nature; 2003 Jan; 421(6921):354-7. PubMed ID: 12540924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Moisture transport across Central America as a positive feedback on abrupt climatic changes.
    Leduc G; Vidal L; Tachikawa K; Rostek F; Sonzogni C; Beaufort L; Bard E
    Nature; 2007 Feb; 445(7130):908-11. PubMed ID: 17314978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil.
    Cruz FW; Burns SJ; Karmann I; Sharp WD; Vuille M; Cardoso AO; Ferrari JA; Dias PL; Viana O
    Nature; 2005 Mar; 434(7029):63-6. PubMed ID: 15744298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes.
    McManus JF; Francois R; Gherardi JM; Keigwin LD; Brown-Leger S
    Nature; 2004 Apr; 428(6985):834-7. PubMed ID: 15103371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CO
    Rae JWB; Burke A; Robinson LF; Adkins JF; Chen T; Cole C; Greenop R; Li T; Littley EFM; Nita DC; Stewart JA; Taylor BJ
    Nature; 2018 Oct; 562(7728):569-573. PubMed ID: 30356182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thresholds for Cenozoic bipolar glaciation.
    Deconto RM; Pollard D; Wilson PA; Pälike H; Lear CH; Pagani M
    Nature; 2008 Oct; 455(7213):652-6. PubMed ID: 18833277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period.
    Nunes F; Norris RD
    Nature; 2006 Jan; 439(7072):60-3. PubMed ID: 16397495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Siple Dome ice reveals two modes of millennial CO2 change during the last ice age.
    Ahn J; Brook EJ
    Nat Commun; 2014 Apr; 5():3723. PubMed ID: 24781344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean.
    Bates NR; Pequignet AC; Johnson RJ; Gruber N
    Nature; 2002 Dec; 420(6915):489-93. PubMed ID: 12487116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ventilation of the deep Southern Ocean and deglacial CO2 rise.
    Skinner LC; Fallon S; Waelbroeck C; Michel E; Barker S
    Science; 2010 May; 328(5982):1147-51. PubMed ID: 20508128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin.
    Martrat B; Grimalt JO; Shackleton NJ; de Abreu L; Hutterli MA; Stocker TF
    Science; 2007 Jul; 317(5837):502-7. PubMed ID: 17569824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw.
    Bereiter B; Lüthi D; Siegrist M; Schüpbach S; Stocker TF; Fischer H
    Proc Natl Acad Sci U S A; 2012 Jun; 109(25):9755-60. PubMed ID: 22675123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Palaeoceanography. Antarctic stratification and glacial CO2.
    Keeling RF; Visbeck M
    Nature; 2001 Aug; 412(6847):605-6. PubMed ID: 11493910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years.
    Loulergue L; Schilt A; Spahni R; Masson-Delmotte V; Blunier T; Lemieux B; Barnola JM; Raynaud D; Stocker TF; Chappellaz J
    Nature; 2008 May; 453(7193):383-6. PubMed ID: 18480822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.
    Watson AJ; Bakker DC; Ridgwell AJ; Boyd PW; Law CS
    Nature; 2000 Oct; 407(6805):730-3. PubMed ID: 11048716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of Antarctic sea ice on glacial-interglacial CO2 variations.
    Stephens BB; Keeling RF
    Nature; 2000 Mar; 404(6774):171-4. PubMed ID: 10724166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.