These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18787685)

  • 1. Top-down analysis of temporal hierarchy in biochemical reaction networks.
    Jamshidi N; Palsson BØ
    PLoS Comput Biol; 2008 Sep; 4(9):e1000177. PubMed ID: 18787685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A data-driven approach for timescale decomposition of biochemical reaction networks.
    Akbari A; Haiman ZB; Palsson BO
    mSystems; 2024 Feb; 9(2):e0100123. PubMed ID: 38259168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks.
    Soh KC; Miskovic L; Hatzimanikatis V
    FEMS Yeast Res; 2012 Mar; 12(2):129-43. PubMed ID: 22129227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulating genome-scale kinetic models in the post-genome era.
    Jamshidi N; Palsson BØ
    Mol Syst Biol; 2008; 4():171. PubMed ID: 18319723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics.
    Nikerel IE; van Winden WA; Verheijen PJ; Heijnen JJ
    Metab Eng; 2009 Jan; 11(1):20-30. PubMed ID: 18718548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes.
    Smallbone K; Messiha HL; Carroll KM; Winder CL; Malys N; Dunn WB; Murabito E; Swainston N; Dada JO; Khan F; Pir P; Simeonidis E; Spasić I; Wishart J; Weichart D; Hayes NW; Jameson D; Broomhead DS; Oliver SG; Gaskell SJ; McCarthy JE; Paton NW; Westerhoff HV; Kell DB; Mendes P
    FEBS Lett; 2013 Sep; 587(17):2832-41. PubMed ID: 23831062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools.
    Famili I; Palsson BO
    Biophys J; 2003 Jul; 85(1):16-26. PubMed ID: 12829460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FCDECOMP: decomposition of metabolic networks based on flux coupling relations.
    Rezvan A; Marashi SA; Eslahchi C
    J Bioinform Comput Biol; 2014 Oct; 12(5):1450028. PubMed ID: 25362842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Description and analysis of metabolic connectivity and dynamics in the human red blood cell.
    Kauffman KJ; Pajerowski JD; Jamshidi N; Palsson BO; Edwards JS
    Biophys J; 2002 Aug; 83(2):646-62. PubMed ID: 12124254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filling kinetic gaps: dynamic modeling of metabolism where detailed kinetic information is lacking.
    Resendis-Antonio O
    PLoS One; 2009; 4(3):e4967. PubMed ID: 19305506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model reduction method for biochemical reaction networks.
    Rao S; van der Schaft A; van Eunen K; Bakker BM; Jayawardhana B
    BMC Syst Biol; 2014 May; 8():52. PubMed ID: 24885656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative modeling of biochemical networks.
    Hofestädt R; Thelen S
    In Silico Biol; 1998; 1(1):39-53. PubMed ID: 11471241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Homeostatic Mechanisms in Biochemical Networks.
    Reed M; Best J; Golubitsky M; Stewart I; Nijhout HF
    Bull Math Biol; 2017 Nov; 79(11):2534-2557. PubMed ID: 28884446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation and structural analysis of conserved pools for genome-scale metabolic reconstructions.
    Nikolaev EV; Burgard AP; Maranas CD
    Biophys J; 2005 Jan; 88(1):37-49. PubMed ID: 15489308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-linear reduction for kinetic models of metabolic reaction networks.
    Gerdtzen ZP; Daoutidis P; Hu WS
    Metab Eng; 2004 Apr; 6(2):140-54. PubMed ID: 15113567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring dynamic properties of biochemical reaction networks from structural knowledge.
    Klipp E; Liebermeister W; Wierling C
    Genome Inform; 2004; 15(1):125-37. PubMed ID: 15712116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Building a kinetic model of trehalose biosynthesis in Saccharomyces cerevisiae.
    Smallbone K; Malys N; Messiha HL; Wishart JA; Simeonidis E
    Methods Enzymol; 2011; 500():355-70. PubMed ID: 21943906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
    Famili I; Mahadevan R; Palsson BO
    Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring differences in the distribution of reaction rates across conditions.
    Hendrickx DM; Hoefsloot HC; Hendriks MM; Vis DJ; Canelas AB; Teusink B; Smilde AK
    Mol Biosyst; 2012 Sep; 8(9):2415-23. PubMed ID: 22782002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The compositional and evolutionary logic of metabolism.
    Braakman R; Smith E
    Phys Biol; 2013 Feb; 10(1):011001. PubMed ID: 23234798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.