BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18787836)

  • 1. Spatiotemporal analysis of endocytosis and membrane distribution of fluorescent sterols in living cells.
    Wüstner D; Faergeman NJ
    Histochem Cell Biol; 2008 Nov; 130(5):891-908. PubMed ID: 18787836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Live-Cell Imaging of Fluorescent Sterols for Analysis of Intracellular Cholesterol Transport.
    Modzel M; Lund FW; Wüstner D
    Methods Mol Biol; 2017; 1583():111-140. PubMed ID: 28205171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma membrane sterol distribution resembles the surface topography of living cells.
    Wüstner D
    Mol Biol Cell; 2007 Jan; 18(1):211-28. PubMed ID: 17065557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle.
    Hao M; Lin SX; Karylowski OJ; Wüstner D; McGraw TE; Maxfield FR
    J Biol Chem; 2002 Jan; 277(1):609-17. PubMed ID: 11682487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of ultraviolet wide-field imaging and multiphoton microscopy for analysis of dehydroergosterol in cellular membranes.
    Wüstner D; Brewer JR; Bagatolli L; Sage D
    Microsc Res Tech; 2011 Jan; 74(1):92-108. PubMed ID: 21181715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of rapid internalization and intracellular transport of sterol by macrophage foam cells.
    Wüstner D; Mondal M; Tabas I; Maxfield FR
    Traffic; 2005 May; 6(5):396-412. PubMed ID: 15813750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatic aberration correction and deconvolution for UV sensitive imaging of fluorescent sterols in cytoplasmic lipid droplets.
    Wüstner D; Faergeman NJ
    Cytometry A; 2008 Aug; 73(8):727-44. PubMed ID: 18561197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence techniques using dehydroergosterol to study cholesterol trafficking.
    McIntosh AL; Atshaves BP; Huang H; Gallegos AM; Kier AB; Schroeder F
    Lipids; 2008 Dec; 43(12):1185-208. PubMed ID: 18536950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton.
    Mundy DI; Machleidt T; Ying YS; Anderson RG; Bloom GS
    J Cell Sci; 2002 Nov; 115(Pt 22):4327-39. PubMed ID: 12376564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of sterol distributions in the plasma membrane of living cells.
    Zhang W; McIntosh AL; Xu H; Wu D; Gruninger T; Atshaves B; Liu JC; Schroeder F
    Biochemistry; 2005 Mar; 44(8):2864-84. PubMed ID: 15723530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of ABC proteins Aus1p and Pdr11p in the uptake of external sterols in yeast: dehydroergosterol fluorescence study.
    Kohut P; Wüstner D; Hronska L; Kuchler K; Hapala I; Valachovic M
    Biochem Biophys Res Commun; 2011 Jan; 404(1):233-8. PubMed ID: 21110944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-cholesterol loading does not trigger phase separation of the fluorescent sterol dehydroergosterol in the plasma membrane of macrophages.
    Wüstner D
    Chem Phys Lipids; 2008 Aug; 154(2):129-36. PubMed ID: 18534190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and cholesterol domain dynamics of an enriched caveolae/raft isolate.
    Gallegos AM; McIntosh AL; Atshaves BP; Schroeder F
    Biochem J; 2004 Sep; 382(Pt 2):451-61. PubMed ID: 15149285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Niemann-Pick C2 protein regulates sterol transport between plasma membrane and late endosomes in human fibroblasts.
    Berzina Z; Solanko LM; Mehadi AS; Jensen MLV; Lund FW; Modzel M; Szomek M; Solanko KA; Dupont A; Nielsen GK; Heegaard CW; Ejsing CS; Wüstner D
    Chem Phys Lipids; 2018 Jul; 213():48-61. PubMed ID: 29580834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence and multiphoton imaging resolve unique structural forms of sterol in membranes of living cells.
    McIntosh AL; Gallegos AM; Atshaves BP; Storey SM; Kannoju D; Schroeder F
    J Biol Chem; 2003 Feb; 278(8):6384-403. PubMed ID: 12456684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric transbilayer distribution of sterol across plasma membranes determined by fluorescence quenching of dehydroergosterol.
    Hale JE; Schroeder F
    Eur J Biochem; 1982 Mar; 122(3):649-61. PubMed ID: 7060596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters.
    Tagawa A; Mezzacasa A; Hayer A; Longatti A; Pelkmans L; Helenius A
    J Cell Biol; 2005 Aug; 170(5):769-79. PubMed ID: 16129785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High density lipoprotein-mediated cholesterol uptake and targeting to lipid droplets in intact L-cell fibroblasts. A single- and multiphoton fluorescence approach.
    Frolov A; Petrescu A; Atshaves BP; So PT; Gratton E; Serrero G; Schroeder F
    J Biol Chem; 2000 Apr; 275(17):12769-80. PubMed ID: 10777574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caveolar internalization of growth hormone.
    Lobie PE; Sadir R; Graichen R; Mertani HC; Morel G
    Exp Cell Res; 1999 Jan; 246(1):47-55. PubMed ID: 9882514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.