BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18787885)

  • 1. Ion transporters involved in acidification of the resorption lacuna in osteoclasts.
    Henriksen K; Sørensen MG; Jensen VK; Dziegiel MH; Nosjean O; Karsdal MA
    Calcif Tissue Int; 2008 Sep; 83(3):230-42. PubMed ID: 18787885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification.
    Henriksen K; Sørensen MG; Nielsen RH; Gram J; Schaller S; Dziegiel MH; Everts V; Bollerslev J; Karsdal MA
    J Bone Miner Res; 2006 Jan; 21(1):58-66. PubMed ID: 16355274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7.
    Henriksen K; Gram J; Neutzsky-Wulff AV; Jensen VK; Dziegiel MH; Bollerslev J; Karsdal MA
    Biochem Biophys Res Commun; 2009 Jan; 378(4):804-9. PubMed ID: 19070589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption.
    Sørensen MG; Henriksen K; Neutzsky-Wulff AV; Dziegiel MH; Karsdal MA
    J Bone Miner Res; 2007 Oct; 22(10):1640-8. PubMed ID: 17576165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone resorption inhibitor alendronate normalizes the reduced bone thickness of TRPV5(-/-) mice.
    Nijenhuis T; van der Eerden BC; Hoenderop JG; Weinans H; van Leeuwen JP; Bindels RJ
    J Bone Miner Res; 2008 Nov; 23(11):1815-24. PubMed ID: 18597625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion channels and transporters in osteoclasts.
    Supanchart C; Kornak U
    Arch Biochem Biophys; 2008 May; 473(2):161-5. PubMed ID: 18406337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of mouse osteoclast K-Cl Co-transporter-1 and its role during bone resorption.
    Kajiya H; Okamoto F; Li JP; Nakao A; Okabe K
    J Bone Miner Res; 2006 Jul; 21(7):984-92. PubMed ID: 16813519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A vacuolar ATPase inhibitor, FR167356, prevents bone resorption in ovariectomized rats with high potency and specificity: potential for clinical application.
    Niikura K; Takeshita N; Takano M
    J Bone Miner Res; 2005 Sep; 20(9):1579-88. PubMed ID: 16059630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the bone phenotype in ClC-7-deficient mice.
    Neutzsky-Wulff AV; Karsdal MA; Henriksen K
    Calcif Tissue Int; 2008 Dec; 83(6):425-37. PubMed ID: 18958510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-bound carbonic anhydrases in osteoclasts.
    Riihonen R; Supuran CT; Parkkila S; Pastorekova S; Väänänen HK; Laitala-Leinonen T
    Bone; 2007 Apr; 40(4):1021-31. PubMed ID: 17291844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation.
    Schaller S; Henriksen K; Sveigaard C; Heegaard AM; Hélix N; Stahlhut M; Ovejero MC; Johansen JV; Solberg H; Andersen TL; Hougaard D; Berryman M; Shiødt CB; Sørensen BH; Lichtenberg J; Christophersen P; Foged NT; Delaissé JM; Engsig MT; Karsdal MA
    J Bone Miner Res; 2004 Jul; 19(7):1144-53. PubMed ID: 15176998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model of osteoclast acidification during bone resorption.
    Marcoline FV; Ishida Y; Mindell JA; Nayak S; Grabe M
    Bone; 2016 Dec; 93():167-180. PubMed ID: 27650914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoclastic acid transport: mechanism and implications for physiological and pharmacological regulation.
    Schlesinger PH; Mattsson JP; Blair HC
    Miner Electrolyte Metab; 1994; 20(1-2):31-9. PubMed ID: 8202050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of chloride channels in osteoclasts: ClC-7 as a target for osteoporosis treatment.
    Schaller S; Henriksen K; Sørensen MG; Karsdal MA
    Drug News Perspect; 2005 Oct; 18(8):489-95. PubMed ID: 16391718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rationale for osteoclast selectivity of inhibiting the lysosomal V-ATPase a3 isoform.
    Nyman JK; Väänänen HK
    Calcif Tissue Int; 2010 Sep; 87(3):273-83. PubMed ID: 20596699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption.
    Sørensen MG; Karsdal MA; Dziegiel MH; Boutin JA; Nosjean O; Henriksen K
    BMC Musculoskelet Disord; 2010 Oct; 11():250. PubMed ID: 20977756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative assay for lysosomal acidification rates in human osteoclasts.
    Jensen VK; Nosjean O; Dziegiel MH; Boutin JA; Sørensen MG; Karsdal MA; Henriksen K
    Assay Drug Dev Technol; 2011 Apr; 9(2):157-64. PubMed ID: 21050068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of bone resorption in vitro by antisense RNA and DNA molecules targeted against carbonic anhydrase II or two subunits of vacuolar H(+)-ATPase.
    Laitala T; Väänänen HK
    J Clin Invest; 1994 Jun; 93(6):2311-8. PubMed ID: 8200964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption.
    Qin A; Cheng TS; Pavlos NJ; Lin Z; Dai KR; Zheng MH
    Int J Biochem Cell Biol; 2012 Sep; 44(9):1422-35. PubMed ID: 22652318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function.
    Lange PF; Wartosch L; Jentsch TJ; Fuhrmann JC
    Nature; 2006 Mar; 440(7081):220-3. PubMed ID: 16525474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.