BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1878865)

  • 1. Learning disability and impairment of synaptogenesis in HTX-rats with arrested shunt-dependent hydrocephalus.
    Miyazawa T; Sato K
    Childs Nerv Syst; 1991 Jun; 7(3):121-8. PubMed ID: 1878865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early ventriculoperitoneal shunt--effects on learning ability and synaptogenesis of the brain in congenitally hydrocephalic HTX rats.
    Suda K; Sato K; Takeda N; Miyazawa T; Arai H
    Childs Nerv Syst; 1994 Jan; 10(1):19-23. PubMed ID: 8194057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rat model of spontaneously arrested hydrocephalus. A behavioural study.
    Miyazawa T; Sato K; Ikeda Y; Nakamura N; Matsumoto K
    Childs Nerv Syst; 1997 Apr; 13(4):189-93. PubMed ID: 9202853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal damage in hydrocephalus and its restoration by shunt insertion in experimental hydrocephalus: a study involving the neurofilament-immunostaining method.
    Aoyama Y; Kinoshita Y; Yokota A; Hamada T
    J Neurosurg; 2006 May; 104(5 Suppl):332-9. PubMed ID: 16848091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: pre- and postshunting observations.
    Del Bigio MR; Crook CR; Buist R
    Exp Neurol; 1997 Nov; 148(1):256-64. PubMed ID: 9398467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural changes in the deep cortical pyramidal cells of infant rats with inherited hydrocephalus and the effect of shunt treatment.
    Boillat CA; Jones HC; Kaiser GL; Harris NG
    Exp Neurol; 1997 Oct; 147(2):377-88. PubMed ID: 9344562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of cortical morphology in infantile hydrocephalic animals after ventriculoperitoneal shunt placement.
    Hale PM; McAllister JP; Katz SD; Wright LC; Lovely TJ; Miller DW; Wolfson BJ; Salotto AG; Shroff DV
    Neurosurgery; 1992 Dec; 31(6):1085-96; discussion 1096. PubMed ID: 1470319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of synapse-related proteins (SVP-38 and drebrins) during development of brain in congenitally hydrocephalic HTX rats with and without early placement of ventriculoperitoneal shunt.
    Suda K; Sato K; Miyazawa T; Arai H
    Pediatr Neurosurg; 1994; 20(1):50-6. PubMed ID: 8142282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventricle shunting in young H-Tx rats with inherited congenital hydrocephalus: a quantitative histological study of cortical grey matter.
    Harris NG; Jones HC; Patel S
    Childs Nerv Syst; 1994 Jul; 10(5):293-301; discussion 301. PubMed ID: 7954498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning deficits in congenitally hydrocephalic rats and prevention by early shunt treatment.
    Jones HC; Rivera KM; Harris NG
    Childs Nerv Syst; 1995 Nov; 11(11):655-60. PubMed ID: 8608583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological analysis of progressive hydrocephalus and shunt-dependent arrested hydrocephalus. An experimental study.
    Takei F; Sato O
    Pediatr Neurosurg; 1995; 23(5):246-53. PubMed ID: 8688349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversibility of functionally injured neurotransmitter systems with shunt placement in hydrocephalic rats: implications for intellectual impairment in hydrocephalus.
    Tashiro Y; Drake JM
    J Neurosurg; 1998 Apr; 88(4):709-17. PubMed ID: 9525718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Management of hydrocephalus in children with plasminogen deficiency.
    Weinzierl MR; Collmann H; Korinth MC; Gilsbach JM; Rohde V
    Eur J Pediatr Surg; 2007 Apr; 17(2):124-8. PubMed ID: 17503307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of learning and memory impairments with changes in the septohippocampal cholinergic system in rats with kaolin-induced hydrocephalus.
    Shim I; Ha Y; Chung JY; Lee HJ; Yang KH; Chang JW
    Neurosurgery; 2003 Aug; 53(2):416-25; discussion 425. PubMed ID: 12925261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolite changes in the cerebral cortex of treated and untreated infant hydrocephalic rats studied using in vitro 31P-NMR spectroscopy.
    Harris NG; Plant HD; Briggs RW; Jones HC
    J Neurochem; 1996 Nov; 67(5):2030-8. PubMed ID: 8863510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampal synaptogenesis in hydrocephalic HTX-rats using a monoclonal anti-synaptic vesicle protein antibody.
    Miyazawa T; Sato K
    Brain Dev; 1994; 16(6):432-6. PubMed ID: 7694989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periventricular pathology in hydrocephalic rabbits before and after shunting.
    Del Bigio MR; Bruni JE
    Acta Neuropathol; 1988; 77(2):186-95. PubMed ID: 3227816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased hypoxanthine concentrations in cerebrospinal fluid of infants with hydrocephalus.
    Bejar R; Saugstad OD; James H; Gluck L
    J Pediatr; 1983 Jul; 103(1):44-8. PubMed ID: 6864395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical synaptogenesis in congenitally hydrocephalic HTX-rats using monoclonal anti-synaptic vesicle protein antibody.
    Miyazawa T; Nishiye H; Sato K; Kobayashi R; Hattori S; Shirai T; Obata K
    Brain Dev; 1992 Mar; 14(2):75-9. PubMed ID: 1377882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Intraoperative sonographic diagnosis of the ventricular position of shunt systems in infants with hydrocephalus].
    Kellnar S; Ring-Mrozik E; Deindl C
    Z Kinderchir; 1989 Jun; 44(3):131-4. PubMed ID: 2750337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.