These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18789460)

  • 1. Phytotoxic polyacetylenes from roots of Russian knapweed (Acroptilon repens (L.) DC.).
    Quintana N; Weir TL; Du J; Broeckling CD; Rieder JP; Stermitz FR; Paschke MW; Vivanco JM
    Phytochemistry; 2008 Oct; 69(14):2572-8. PubMed ID: 18789460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytotoxic flavonoids from roots of Stellera chamaejasme L. (Thymelaeaceae).
    Yan Z; Guo H; Yang J; Liu Q; Jin H; Xu R; Cui H; Qin B
    Phytochemistry; 2014 Oct; 106():61-68. PubMed ID: 25096753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 7,8-Benzoflavone: a phytotoxin from root exudates of invasive Russian knapweed.
    Stermitz FR; Bais HP; Foderaro TA; Vivanco JM
    Phytochemistry; 2003 Sep; 64(2):493-7. PubMed ID: 12943767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendrazawaynes A and B, antifungal polyacetylenes from Dendranthema zawadskii (Asteraceae).
    Rahman MA; Cho SC; Song J; Mun HT; Moon SS
    Planta Med; 2007 Aug; 73(10):1089-94. PubMed ID: 17691057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyacetylenes from the roots of Polyalthia debilis.
    Panthama N; Kanokmedhakul S; Kanokmedhakul K
    J Nat Prod; 2010 Aug; 73(8):1366-9. PubMed ID: 20795741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potent alpha-glucosidase inhibitors from the roots of Panax japonicus C. A. Meyer var. major.
    Chan HH; Sun HD; Reddy MV; Wu TS
    Phytochemistry; 2010 Aug; 71(11-12):1360-4. PubMed ID: 20493502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and structure elucidation of cytotoxic polyacetylenes and polyenes from Echinacea pallida.
    Pellati F; Calò S; Benvenuti S; Adinolfi B; Nieri P; Melegari M
    Phytochemistry; 2006 Jul; 67(13):1359-64. PubMed ID: 16806329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth inhibitory indole acetic acid polyacetylenic ester from Japanese ivy (Hedera rhombea Bean).
    Yamazoe S; Hasegawa K; Shigemori H
    Phytochemistry; 2007 Jun; 68(12):1706-11. PubMed ID: 17532018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimycobacterial polyacetylenes from Levisticum officinale.
    Schinkovitz A; Stavri M; Gibbons S; Bucar F
    Phytother Res; 2008 May; 22(5):681-4. PubMed ID: 18350523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous determination of ginsenosides and polyacetylenes in American ginseng root (Panax quinquefolium L.) by high-performance liquid chromatography.
    Christensen LP; Jensen M; Kidmose U
    J Agric Food Chem; 2006 Nov; 54(24):8995-9003. PubMed ID: 17117783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic profiling of root exudates of Arabidopsis thaliana.
    Walker TS; Bais HP; Halligan KM; Stermitz FR; Vivanco JM
    J Agric Food Chem; 2003 Apr; 51(9):2548-54. PubMed ID: 12696935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance liquid chromatography analysis of polyacetylenes and polyenes in Echinacea pallida by using a monolithic reversed-phase silica column.
    Pellati F; Calò S; Benvenuti S
    J Chromatogr A; 2007 May; 1149(1):56-65. PubMed ID: 17126349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Polyacetylenes, DGAT inhibitors from the roots of Panax ginseng.
    Lee SW; Kim K; Rho MC; Chung MY; Kim YH; Lee S; Lee HS; Kim YK
    Planta Med; 2004 Mar; 70(3):197-200. PubMed ID: 15114494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytotoxic compounds from roots of Centaurea diffusa Lam.
    Quintana N; El Kassis EG; Stermitz FR; Vivanco JM
    Plant Signal Behav; 2009 Jan; 4(1):9-14. PubMed ID: 19568334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two new naturally occurring optical polyacetylene compounds from Torricellia angulata var intermedia and the determination of their absolute configurations.
    Pan W; Zhang Y; Xu B; Cao P; Liang G
    Nat Prod Res; 2006 Oct; 20(12):1098-104. PubMed ID: 17127663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two new polyacetylene glycosides from the roots of Codonopsis tangshen Oliv.
    Sun J; Wang L; Wang M; Wang Z; Li F
    Nat Prod Res; 2016 Oct; 30(20):2338-43. PubMed ID: 27109245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyacetylenes from the leaves of Vernonia scorpioides (Asteraceae) and their antiproliferative and antiherpetic activities.
    Pollo LA; Bosi CF; Leite AS; Rigotto C; Kratz J; Simões CM; Fonseca DE; Coimbra D; Caramori G; Nepel A; Campos FR; Barison A; Biavatti MW
    Phytochemistry; 2013 Nov; 95():375-83. PubMed ID: 23937905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyacetylenic compounds, ACAT inhibitors from the roots of Panax ginseng.
    Rho MC; Lee HS; Lee SW; Chang JS; Kwon OE; Chung MY; Kim YK
    J Agric Food Chem; 2005 Feb; 53(4):919-22. PubMed ID: 15712998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytotoxic activity and conformational analysis of thymol analogs from Hofmeisteria schaffneri.
    Pérez-Vásquez A; Linares E; Bye R; Cerda-García-Rojas CM; Mata R
    Phytochemistry; 2008 Apr; 69(6):1339-47. PubMed ID: 18328513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial tissue distribution of polyacetylenes in carrot root.
    Baranska M; Schulz H
    Analyst; 2005 Jun; 130(6):855-9. PubMed ID: 15912233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.