BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18789751)

  • 1. Boltwoodite [K(UO2)(SiO3OH)(H2O)1.5] and compreignacite K2[(UO2)3O2(OH)3]2.7H2O characterized by laser fluorescence spectroscopy.
    Arnold T; Baumann N
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1964-8. PubMed ID: 18789751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uranyl sorption onto gibbsite studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS).
    Baumann N; Brendler V; Arnold T; Geipel G; Bernhard G
    J Colloid Interface Sci; 2005 Oct; 290(2):318-24. PubMed ID: 16129445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRLFS evidence for precipitation of uranyl phosphate on the surface of alumina: environmental implications.
    Del Nero M; Galindo C; Barillon R; Madé B
    Environ Sci Technol; 2011 May; 45(9):3982-8. PubMed ID: 21469705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopic study of the uranyl minerals vanmeersscheite U(OH)4[(UO2)3(PO4)2(OH)2].4H2O and arsenouranylite Ca(UO2)[(UO2)3(AsO4)2(OH)2].(OH)2.6H2O.
    Frost RL; Cejka J; Dickfos MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1799-803. PubMed ID: 18691935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Raman and infrared spectroscopic study of the uranyl silicates--weeksite, soddyite and haiweeite: part 2.
    Frost RL; Cejka J; Weier ML; Martens W
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Feb; 63(2):305-12. PubMed ID: 15975846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Raman and infrared spectroscopic study of the uranyl silicates--weeksite, soddyite and haiweeite.
    Frost RL; Cejka J; Weier ML; Martens W; Kloprogge JT
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 May; 64(2):308-15. PubMed ID: 16684640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the interactions of Eu³⁺ and Am³⁺ with uranyl minerals: implications for the storage of spent nuclear fuel.
    Biswas S; Steudtner R; Schmidt M; McKenna C; León Vintró L; Twamley B; Baker RJ
    Dalton Trans; 2016 Apr; 45(15):6383-93. PubMed ID: 27028717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence properties of a uranyl(V)-carbonate species [U(V)O(2)(CO(3))(3)](5-) at low temperature.
    Grossmann K; Arnold T; Ikeda-Ohno A; Steudtner R; Geipel G; Bernhard G
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Mar; 72(2):449-53. PubMed ID: 19091628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of time-resolved laser fluorescence spectroscopy to the environmental biogeochemistry of actinides.
    Collins RN; Saito T; Aoyagi N; Payne TE; Kimura T; Waite TD
    J Environ Qual; 2011; 40(3):731-41. PubMed ID: 21546659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near- and mid-infrared spectroscopy of the uranyl selenite mineral haynesite (UO2)3(SeO3)2(OH)2.5H2O.
    Frost RL; Cejka J
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1959-63. PubMed ID: 18789750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uranium(VI) complexes with phospholipid model compounds--a laser spectroscopic study.
    Koban A; Bernhard G
    J Inorg Biochem; 2007 May; 101(5):750-7. PubMed ID: 17320184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorbed U(VI) surface species on muscovite identified by laser fluorescence spectroscopy and transmission electron microscopy.
    Arnold T; Utsunomiya S; Geipel G; Ewing RC; Baumann N; Brendler V
    Environ Sci Technol; 2006 Aug; 40(15):4646-52. PubMed ID: 16913119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uranyl sorption by smectites: spectroscopic assessment of thermodynamic modeling.
    Chisholm-Brause CJ; Berg JM; Little KM; Matzner RA; Morris DE
    J Colloid Interface Sci; 2004 Sep; 277(2):366-82. PubMed ID: 15341848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An infrared and Raman spectroscopic study of the uranyl micas.
    Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jun; 60(7):1469-80. PubMed ID: 15147689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Raman spectroscopic study of the uranyl phosphate mineral bergenite.
    Frost RL; Cejka J; Ayoko GA; Weier M
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):979-84. PubMed ID: 16876471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments.
    Wang G; Um W; Wang Z; Reinoso-Maset E; Washton NM; Mueller KT; Perdrial N; O'Day PA; Chorover J
    Environ Sci Technol; 2017 Oct; 51(19):11011-11019. PubMed ID: 28884577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic verification of the mineralogy of an ultrathin mineral film on depleted uranium.
    Baumann N; Arnold T; Foerstendorf H; Read D
    Environ Sci Technol; 2008 Nov; 42(22):8266-9. PubMed ID: 19068804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational spectroscopic study of the uranyl selenite mineral derriksite Cu4UO2(SeO3)2(OH)6·H2O.
    Frost RL; Čejka J; Scholz R; López A; Theiss FL; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():473-7. PubMed ID: 24018173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectroscopic study of the molecular structure of the uranyl mineral zippeite from Jáchymov (Joachimsthal), Czech Republic.
    Frost RL; Cejka J; Bostrom T; Weier M; Martens W
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1220-7. PubMed ID: 17113344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of uranium(VI) with lipopolysaccharide.
    Barkleit A; Moll H; Bernhard G
    Dalton Trans; 2008 Jun; (21):2879-86. PubMed ID: 18478152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.