BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18789859)

  • 1. Detecting and exploring partially unfolded states of proteins using a sensor with chaperone bound to its surface.
    George DF; Bilek MM; McKenzie DR
    Biosens Bioelectron; 2008 Dec; 24(4):969-75. PubMed ID: 18789859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-thermal effects in the microwave induced unfolding of proteins observed by chaperone binding.
    George DF; Bilek MM; McKenzie DR
    Bioelectromagnetics; 2008 May; 29(4):324-30. PubMed ID: 18240290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring adsorption of a hydrophobic probe with a surface plasmon resonance sensor to monitor conformational changes in immobilized proteins.
    Yamaguchi S; Mannen T; Zako T; Kamiya N; Nagamune T
    Biotechnol Prog; 2003; 19(4):1348-54. PubMed ID: 12892501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and molecular dynamics simulation of archaeal prefoldin: the molecular mechanism for binding and recognition of nonnative substrate proteins.
    Ohtaki A; Kida H; Miyata Y; Ide N; Yonezawa A; Arakawa T; Iizuka R; Noguchi K; Kita A; Odaka M; Miki K; Yohda M
    J Mol Biol; 2008 Feb; 376(4):1130-41. PubMed ID: 18201719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chaperone-like protein alpha-crystallin dissociates insulin dimers and hexamers.
    Rasmussen T; Kasimova MR; Jiskoot W; van de Weert M
    Biochemistry; 2009 Oct; 48(39):9313-20. PubMed ID: 19715354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins.
    Saito Y; Ihara Y; Leach MR; Cohen-Doyle MF; Williams DB
    EMBO J; 1999 Dec; 18(23):6718-29. PubMed ID: 10581245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance for probing quadruplex folding and interactions with proteins and small molecules.
    Redman JE
    Methods; 2007 Dec; 43(4):302-12. PubMed ID: 17967700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and characterization of Saccharomyces cerevisiae Cne1p, a calnexin homologue.
    Xu X; Kanbara K; Azakami H; Kato A
    J Biochem; 2004 May; 135(5):615-8. PubMed ID: 15173200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding on the chaperone: yield enhancement through loose binding.
    Jewett AI; Shea JE
    J Mol Biol; 2006 Nov; 363(5):945-57. PubMed ID: 16987526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitated release of substrate protein from prefoldin by chaperonin.
    Zako T; Iizuka R; Okochi M; Nomura T; Ueno T; Tadakuma H; Yohda M; Funatsu T
    FEBS Lett; 2005 Jul; 579(17):3718-24. PubMed ID: 15967441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrococcus prefoldin stabilizes protein-folding intermediates and transfers them to chaperonins for correct folding.
    Okochi M; Yoshida T; Maruyama T; Kawarabayasi Y; Kikuchi H; Yohda M
    Biochem Biophys Res Commun; 2002 Mar; 291(4):769-74. PubMed ID: 11866431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A disposable polymer sensor chip combined with micro-fluidics and surface plasmon read-out.
    Zhang N; Liu H; Knoll W
    Biosens Bioelectron; 2009 Feb; 24(6):1783-7. PubMed ID: 18835707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring conformational changes of immobilized RNase A and lysozyme in reductive unfolding by surface plasmon resonance.
    Chen LY
    Anal Chim Acta; 2009 Jan; 631(1):96-101. PubMed ID: 19046685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation is not required for alpha-crystallin's chaperone function.
    Augusteyn RC
    Exp Eye Res; 2004 Dec; 79(6):781-4. PubMed ID: 15642315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Ca2+ and phosphocholine interactions with C-reactive protein using a surface plasmon resonance biosensor.
    Christopeit T; Gossas T; Danielson UH
    Anal Biochem; 2009 Aug; 391(1):39-44. PubMed ID: 19435596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HMGA1a protein unfolds or refolds synthetic DNA-chromophore hybrid polymers: a chaperone-like behavior.
    Wan W; Wang W; Li AD
    Chembiochem; 2008 Jan; 9(2):304-11. PubMed ID: 18067116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GroEL can unfold late intermediates populated on the folding pathways of monellin.
    Patra AK; Udgaonkar JB
    J Mol Biol; 2009 Jun; 389(4):759-75. PubMed ID: 19393665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protease activation of alpha2-macroglobulin modulates a chaperone-like action with broad specificity.
    French K; Yerbury JJ; Wilson MR
    Biochemistry; 2008 Jan; 47(4):1176-85. PubMed ID: 18171086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study.
    Qu J; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Jun; 48(22):4926-36. PubMed ID: 19382746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.