These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Disentangling picosecond events that complicate the quantitative use of the calcium sensor YC3.60. Laptenok SP; van Stokkum IH; Borst JW; van Oort B; Visser AJ; van Amerongen H J Phys Chem B; 2012 Mar; 116(9):3013-20. PubMed ID: 22320307 [TBL] [Abstract][Full Text] [Related]
3. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond. Ungvári T; Gogolák P; Bagdány M; Damjanovich L; Bene L Biochim Biophys Acta; 2016 Apr; 1863(4):703-16. PubMed ID: 26854711 [TBL] [Abstract][Full Text] [Related]
4. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface. Bene L; Gralle M; Damjanovich L Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190 [TBL] [Abstract][Full Text] [Related]
5. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Dietrich A; Buschmann V; Müller C; Sauer M J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691 [TBL] [Abstract][Full Text] [Related]
6. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620 [TBL] [Abstract][Full Text] [Related]
7. Diverse Fluorescence Resonance Energy Transfer Processes Originating from the Conformational Heterogeneity of the Calcium Indicator Yellow Cameleon YC3.60. Tsubota H; Kinoshita Y; Shigeno M; Hosoi H J Phys Chem B; 2023 May; 127(17):3839-3850. PubMed ID: 37089079 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019 [TBL] [Abstract][Full Text] [Related]
10. A quantitative protocol for intensity-based live cell FRET imaging. Kaminski CF; Rees EJ; Schierle GS Methods Mol Biol; 2014; 1076():445-54. PubMed ID: 24108638 [TBL] [Abstract][Full Text] [Related]
11. Rise-time of FRET-acceptor fluorescence tracks protein folding. Lindhoud S; Westphal AH; van Mierlo CP; Visser AJ; Borst JW Int J Mol Sci; 2014 Dec; 15(12):23836-50. PubMed ID: 25535076 [TBL] [Abstract][Full Text] [Related]
12. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy. Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202 [TBL] [Abstract][Full Text] [Related]
13. Depolarized FRET (depolFRET) on the cell surface: FRET control by photoselection. Bene L; Gogolák P; Ungvári T; Bagdány M; Nagy I; Damjanovich L Biochim Biophys Acta; 2016 Feb; 1863(2):322-34. PubMed ID: 26657258 [TBL] [Abstract][Full Text] [Related]
14. Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES). Gordon F; Elcoroaristizabal S; Ryder AG Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129770. PubMed ID: 33214128 [TBL] [Abstract][Full Text] [Related]
15. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence resonance energy transfer-based stoichiometry in living cells. Hoppe A; Christensen K; Swanson JA Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132 [TBL] [Abstract][Full Text] [Related]
17. Global analysis of Förster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence. Laptenok SP; Borst JW; Mullen KM; van Stokkum IH; Visser AJ; van Amerongen H Phys Chem Chem Phys; 2010 Jul; 12(27):7593-602. PubMed ID: 20490396 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]
19. Three-Color Single-Molecule FRET and Fluorescence Lifetime Analysis of Fast Protein Folding. Yoo J; Louis JM; Gopich IV; Chung HS J Phys Chem B; 2018 Dec; 122(49):11702-11720. PubMed ID: 30230835 [TBL] [Abstract][Full Text] [Related]
20. Using structure-function constraints in FRET studies of large macromolecular complexes. Bujalowski WM; Jezewska MJ Methods Mol Biol; 2012; 875():135-64. PubMed ID: 22573439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]