These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 18790997)
81. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Izawa T; Oikawa T; Sugiyama N; Tanisaka T; Yano M; Shimamoto K Genes Dev; 2002 Aug; 16(15):2006-20. PubMed ID: 12154129 [TBL] [Abstract][Full Text] [Related]
82. Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Ishikawa R; Tamaki S; Yokoi S; Inagaki N; Shinomura T; Takano M; Shimamoto K Plant Cell; 2005 Dec; 17(12):3326-36. PubMed ID: 16272430 [TBL] [Abstract][Full Text] [Related]
83. Hd3a protein is a mobile flowering signal in rice. Tamaki S; Matsuo S; Wong HL; Yokoi S; Shimamoto K Science; 2007 May; 316(5827):1033-6. PubMed ID: 17446351 [TBL] [Abstract][Full Text] [Related]
84. Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa. Peng LT; Shi ZY; Li L; Shen GZ; Zhang JL J Plant Physiol; 2008 May; 165(8):876-85. PubMed ID: 17913295 [TBL] [Abstract][Full Text] [Related]
85. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Itoh H; Nonoue Y; Yano M; Izawa T Nat Genet; 2010 Jul; 42(7):635-8. PubMed ID: 20543848 [TBL] [Abstract][Full Text] [Related]
86. Alternative functions of Hd1 in repressing or promoting heading are determined by Ghd7 status under long-day conditions. Zhang Z; Hu W; Shen G; Liu H; Hu Y; Zhou X; Liu T; Xing Y Sci Rep; 2017 Jul; 7(1):5388. PubMed ID: 28710485 [TBL] [Abstract][Full Text] [Related]
87. MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice. Jin J; Shi J; Liu B; Liu Y; Huang Y; Yu Y; Dong A Plant Physiol; 2015 Aug; 168(4):1275-85. PubMed ID: 25855537 [TBL] [Abstract][Full Text] [Related]
88. Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice. Ogiso-Tanaka E; Matsubara K; Yamamoto S; Nonoue Y; Wu J; Fujisawa H; Ishikubo H; Tanaka T; Ando T; Matsumoto T; Yano M PLoS One; 2013; 8(10):e75959. PubMed ID: 24098411 [TBL] [Abstract][Full Text] [Related]
89. Nuclear factor OsNF-YB4 promotes flowering by negatively regulating the floral repressor gene Ghd7 in rice. Peng M; Gan F; Yang F; Pan C; Lin X; Fan X; Chen K; Gao P Biochem Biophys Res Commun; 2021 Sep; 571():32-37. PubMed ID: 34303193 [TBL] [Abstract][Full Text] [Related]
90. Suppressor of rid1 (SID1) shares common targets with RID1 on florigen genes to initiate floral transition in rice. Deng L; Li L; Zhang S; Shen J; Li S; Hu S; Peng Q; Xiao J; Wu C PLoS Genet; 2017 Feb; 13(2):e1006642. PubMed ID: 28234896 [TBL] [Abstract][Full Text] [Related]
91. A genomic and expression compendium of the expanded PEBP gene family from maize. Danilevskaya ON; Meng X; Hou Z; Ananiev EV; Simmons CR Plant Physiol; 2008 Jan; 146(1):250-64. PubMed ID: 17993543 [TBL] [Abstract][Full Text] [Related]
92. Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Saito H; Ogiso-Tanaka E; Okumoto Y; Yoshitake Y; Izumi H; Yokoo T; Matsubara K; Hori K; Yano M; Inoue H; Tanisaka T Plant Cell Physiol; 2012 Apr; 53(4):717-28. PubMed ID: 22422935 [TBL] [Abstract][Full Text] [Related]
93. A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. Dong Z; Danilevskaya O; Abadie T; Messina C; Coles N; Cooper M PLoS One; 2012; 7(8):e43450. PubMed ID: 22912876 [TBL] [Abstract][Full Text] [Related]
94. Florigen-Encoding Genes of Day-Neutral and Photoperiod-Sensitive Maize Are Regulated by Different Chromatin Modifications at the Floral Transition. Mascheretti I; Turner K; Brivio RS; Hand A; Colasanti J; Rossi V Plant Physiol; 2015 Aug; 168(4):1351-63. PubMed ID: 26084920 [TBL] [Abstract][Full Text] [Related]
95. Antagonistic Transcription Factor Complexes Modulate the Floral Transition in Rice. Brambilla V; Martignago D; Goretti D; Cerise M; Somssich M; de Rosa M; Galbiati F; Shrestha R; Lazzaro F; Simon R; Fornara F Plant Cell; 2017 Nov; 29(11):2801-2816. PubMed ID: 29042404 [TBL] [Abstract][Full Text] [Related]
96. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Ryu CH; Lee S; Cho LH; Kim SL; Lee YS; Choi SC; Jeong HJ; Yi J; Park SJ; Han CD; An G Plant Cell Environ; 2009 Oct; 32(10):1412-27. PubMed ID: 19558411 [TBL] [Abstract][Full Text] [Related]
97. Whole-Genome Sequencing and RNA-Seq Reveal Differences in Genetic Mechanism for Flowering Response between Weedy Rice and Cultivated Rice. Garcia RS; Coronejo S; Concepcion J; Subudhi PK Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163531 [TBL] [Abstract][Full Text] [Related]
98. OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Yang Y; Peng Q; Chen GX; Li XH; Wu CY Mol Plant; 2013 Jan; 6(1):202-15. PubMed ID: 22888152 [TBL] [Abstract][Full Text] [Related]
99. Homodimerization of Ehd1 Is Required to Induce Flowering in Rice. Cho LH; Yoon J; Pasriga R; An G Plant Physiol; 2016 Apr; 170(4):2159-71. PubMed ID: 26864016 [TBL] [Abstract][Full Text] [Related]
100. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time. Hwang YH; Kim SK; Lee KC; Chung YS; Lee JH; Kim JK Plant Cell Rep; 2016 Apr; 35(4):857-65. PubMed ID: 26754793 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]