These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 18790998)

  • 1. Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering.
    Wollenberg AC; Strasser B; Cerdán PD; Amasino RM
    Plant Physiol; 2008 Nov; 148(3):1681-94. PubMed ID: 18790998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC.
    Seo E; Lee H; Jeon J; Park H; Kim J; Noh YS; Lee I
    Plant Cell; 2009 Oct; 21(10):3185-97. PubMed ID: 19825833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana.
    Burghardt LT; Runcie DE; Wilczek AM; Cooper MD; Roe JL; Welch SM; Schmitt J
    New Phytol; 2016 Apr; 210(2):564-76. PubMed ID: 26681345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Lee JH; Jung JH; Park CM
    Plant J; 2015 Oct; 84(1):29-40. PubMed ID: 26248809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FLOWERING LOCUS C EXPRESSOR family proteins regulate FLOWERING LOCUS C expression in both winter-annual and rapid-cycling Arabidopsis.
    Ding L; Kim SY; Michaels SD
    Plant Physiol; 2013 Sep; 163(1):243-52. PubMed ID: 23899645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled turnover of CONSTANS protein by the HOS1 E3 ligase regulates floral transition at low temperatures.
    Joon Seo P; Jung JH; Park MJ; Lee K; Park CM
    Plant Signal Behav; 2013 Apr; 8(4):e23780. PubMed ID: 23425850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of flowering signals in winter-annual Arabidopsis.
    Michaels SD; Himelblau E; Kim SY; Schomburg FM; Amasino RM
    Plant Physiol; 2005 Jan; 137(1):149-56. PubMed ID: 15618421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability .
    Kong X; Luo X; Qu GP; Liu P; Jin JB
    J Integr Plant Biol; 2017 Jan; 59(1):15-29. PubMed ID: 27925396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SHB1 plays dual roles in photoperiodic and autonomous flowering.
    Zhou Y; Ni M
    Dev Biol; 2009 Jul; 331(1):50-7. PubMed ID: 19406114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis.
    Searle I; He Y; Turck F; Vincent C; Fornara F; Kröber S; Amasino RA; Coupland G
    Genes Dev; 2006 Apr; 20(7):898-912. PubMed ID: 16600915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days.
    Fernández V; Takahashi Y; Le Gourrierec J; Coupland G
    Plant J; 2016 Jun; 86(5):426-40. PubMed ID: 27117775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2 Interact with CONSTANS and Promote Photoperiodic Flowering Transition.
    Kumar S; Choudhary P; Gupta M; Nath U
    Plant Physiol; 2018 Apr; 176(4):2917-2930. PubMed ID: 29507119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Lee JH; Park CM
    Plant Signal Behav; 2015; 10(11):e1089373. PubMed ID: 26430754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC.
    Reeves PH; Murtas G; Dash S; Coupland G
    Development; 2002 Dec; 129(23):5349-61. PubMed ID: 12403707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A root chicory MADS box sequence and the Arabidopsis flowering repressor FLC share common features that suggest conserved function in vernalization and de-vernalization responses.
    Périlleux C; Pieltain A; Jacquemin G; Bouché F; Detry N; D'Aloia M; Thiry L; Aljochim P; Delansnay M; Mathieu AS; Lutts S; Tocquin P
    Plant J; 2013 Aug; 75(3):390-402. PubMed ID: 23581257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mitogen-activated protein kinase phosphatase PHS1 regulates flowering in Arabidopsis thaliana.
    Tang Q; Guittard-Crilat E; Maldiney R; Habricot Y; Miginiac E; Bouly JP; Lebreton S
    Planta; 2016 Apr; 243(4):909-23. PubMed ID: 26721646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the vernalization response.
    Bond DM; Dennis ES; Pogson BJ; Finnegan EJ
    Mol Plant; 2009 Jul; 2(4):724-737. PubMed ID: 19825652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of VIN3-LIKE 2 in facultative photoperiodic flowering response in Arabidopsis.
    Kim DH; Sung S
    Plant Signal Behav; 2010 Dec; 5(12):1672-3. PubMed ID: 21150261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis.
    Iñigo S; Alvarez MJ; Strasser B; Califano A; Cerdán PD
    Plant J; 2012 Feb; 69(4):601-12. PubMed ID: 21985558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C.
    Eom H; Park SJ; Kim MK; Kim H; Kang H; Lee I
    Plant J; 2018 Jan; 93(1):79-91. PubMed ID: 29086456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.