BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18791026)

  • 1. Transport of glucose by Bifidobacterium animalis subsp. lactis occurs via facilitated diffusion.
    Briczinski EP; Phillips AT; Roberts RF
    Appl Environ Microbiol; 2008 Nov; 74(22):6941-8. PubMed ID: 18791026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-specific genotyping of Bifidobacterium animalis subsp. lactis by using single-nucleotide polymorphisms, insertions, and deletions.
    Briczinski EP; Loquasto JR; Barrangou R; Dudley EG; Roberts AM; Roberts RF
    Appl Environ Microbiol; 2009 Dec; 75(23):7501-8. PubMed ID: 19801460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp. nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov.
    Masco L; Ventura M; Zink R; Huys G; Swings J
    Int J Syst Evol Microbiol; 2004 Jul; 54(Pt 4):1137-1143. PubMed ID: 15280282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolism of glucose and lactose in Bifidobacterium animalis subsp. lactis, studied by 13C Nuclear Magnetic Resonance.
    González-Rodríguez I; Gaspar P; Sánchez B; Gueimonde M; Margolles A; Neves AR
    Appl Environ Microbiol; 2013 Dec; 79(24):7628-38. PubMed ID: 24077711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Seq reveals transcriptomic interactions of Bacillus subtilis natto and Bifidobacterium animalis subsp. lactis in whole soybean solid-state co-fermentation.
    Wang HK; Ng YK; Koh E; Yao L; Chien AS; Lin HX; Lee YK
    Food Microbiol; 2015 Oct; 51():25-32. PubMed ID: 26187824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the lactose transport system in the strain Bifidobacterium bifidum DSM 20082.
    Krzewinski F; Brassart C; Gavini F; Bouquelet S
    Curr Microbiol; 1996 Jun; 32(6):301-7. PubMed ID: 8640105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B.
    Seyfang A; Duszenko M
    Eur J Biochem; 1991 Nov; 202(1):191-6. PubMed ID: 1935976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression.
    Parche S; Beleut M; Rezzonico E; Jacobs D; Arigoni F; Titgemeyer F; Jankovic I
    J Bacteriol; 2006 Feb; 188(4):1260-5. PubMed ID: 16452407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport and metabolism of glucose and arabinose in Bifidobacterium breve.
    Degnan BA; Macfarlane GT
    Arch Microbiol; 1993; 160(2):144-51. PubMed ID: 8216508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of alpha-methyl glucoside.
    Vadeboncoeur C; Trahan L
    Can J Microbiol; 1982 Feb; 28(2):190-9. PubMed ID: 7066764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined transcriptome and proteome analysis of Bifidobacterium animalis subsp. lactis BB-12 grown on xylo-oligosaccharides and a model of their utilization.
    Gilad O; Jacobsen S; Stuer-Lauridsen B; Pedersen MB; Garrigues C; Svensson B
    Appl Environ Microbiol; 2010 Nov; 76(21):7285-91. PubMed ID: 20851982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete genome sequence of probiotic Bifidobacterium animalis subsp. lactis strain V9.
    Sun Z; Chen X; Wang J; Gao P; Zhou Z; Ren Y; Sun T; Wang L; Meng H; Chen W; Zhang H
    J Bacteriol; 2010 Aug; 192(15):4080-1. PubMed ID: 20511504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells.
    Bigornia L; Bihler I
    Biochim Biophys Acta; 1986 Mar; 885(3):335-44. PubMed ID: 3511975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts.
    Candela M; Centanni M; Fiori J; Biagi E; Turroni S; Orrico C; Bergmann S; Hammerschmidt S; Brigidi P
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1609-1618. PubMed ID: 20167618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic ability of Bifidobacterium animalis subsp. lactis to hydrolyze milk proteins: identification and characterization of endopeptidase O.
    Janer C; Arigoni F; Lee BH; Peláez C; Requena T
    Appl Environ Microbiol; 2005 Dec; 71(12):8460-5. PubMed ID: 16332835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-obesity properties of the strain Bifidobacterium animalis subsp. lactis CECT 8145 in Zücker fatty rats.
    Carreras NL; Martorell P; Chenoll E; Genovés S; Ramón D; Aleixandre A
    Benef Microbes; 2018 Jun; 9(4):629-641. PubMed ID: 29695181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different utilization of glucose and raffinose in Bifidobacterium breve and Bifidobacterium animalis.
    Trojanová I; Vlková E; Rada V; Marounek M
    Folia Microbiol (Praha); 2006; 51(4):320-4. PubMed ID: 17007436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach.
    Sánchez B; Champomier-Vergès MC; Stuer-Lauridsen B; Ruas-Madiedo P; Anglade P; Baraige F; de los Reyes-Gavilán CG; Johansen E; Zagorec M; Margolles A
    Appl Environ Microbiol; 2007 Nov; 73(21):6757-67. PubMed ID: 17827318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose transport across plasma membrane in human platelets.
    Leoncini G; Maresca M
    Ital J Biochem; 1986; 35(5):287-95. PubMed ID: 3804696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.