BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 18791264)

  • 1. In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube.
    Ji HS; Lee SJ
    Clin Hemorheol Microcirc; 2008; 40(1):19-30. PubMed ID: 18791264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles.
    Lima R; Wada S; Takeda M; Tsubota K; Yamaguchi T
    J Biomech; 2007; 40(12):2752-7. PubMed ID: 17399723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of microgravity on microcirculation.
    Majhi SN; Nair VR
    Microgravity Sci Technol; 1990 Sep; 3(2):117-20. PubMed ID: 11541479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile.
    Stoltz JF; Donner M
    Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nonaxisymmetric hematocrit distribution on non-Newtonian blood flow in small tubes.
    Das B; Johnson PC; Popel AS
    Biorheology; 1998; 35(1):69-87. PubMed ID: 10211130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall.
    Sharan M; Popel AS
    Biorheology; 2001; 38(5-6):415-28. PubMed ID: 12016324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube.
    El-Khatib FH; Damiano ER
    Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer.
    Cokelet GR; Brown JR; Codd SL; Seymour JD
    Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hemorrheology, microcirculation and oxygenation. Physiopathological and therapeutic aspects].
    Ehrly M
    Rev Fr Gynecol Obstet; 1991 Feb; 86(2 Pt 2):131-8. PubMed ID: 1767162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid particle diffusion through high-hematocrit blood flow within a capillary tube.
    Saadatmand M; Ishikawa T; Matsuki N; Jafar Abdekhodaie M; Imai Y; Ueno H; Yamaguchi T
    J Biomech; 2011 Jan; 44(1):170-5. PubMed ID: 20887991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Flow characteristics of blood and its therapeutic modification].
    Reinhart WH
    Schweiz Med Wochenschr; 1987 May; 117(18):693-7. PubMed ID: 3589626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.
    Murata T
    Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Association between the hemodynamic and rheological parameters in the micro blood vessels in vivo].
    Mamisashvili VA; Mchedlishvili NT; Chachanidze ET; Urotadze KN
    Georgian Med News; 2005 Feb; (119):68-70. PubMed ID: 15834187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Hemorheology: blood flow hematology].
    Reinhart WH
    Schweiz Med Wochenschr; 1995 Mar; 125(9):387-95. PubMed ID: 7892565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    J Biomech; 2008 Jul; 41(10):2188-96. PubMed ID: 18589429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.