BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18791834)

  • 1. Benzodiazepine-mediated structural changes in the multidrug transporter P-glycoprotein: an intrinsic fluorescence quenching analysis.
    Lima SA; Cordeiro-da-Silva A; de Castro B; Gameiro P
    J Membr Biol; 2008 Jun; 223(3):117-25. PubMed ID: 18791834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of P-glycoprotein tryptophan residues to benzodiazepines and ATP interaction.
    Lima SA; Cordeiro-da-Silva A; de Castro B; Gameiro P
    Biophys Chem; 2007 Jan; 125(1):143-50. PubMed ID: 16919386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic fluorescence of the P-glycoprotein multidrug transporter: sensitivity of tryptophan residues to binding of drugs and nucleotides.
    Liu R; Siemiarczuk A; Sharom FJ
    Biochemistry; 2000 Dec; 39(48):14927-38. PubMed ID: 11101309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter.
    Liu R; Sharom FJ
    Biochemistry; 1997 Mar; 36(10):2836-43. PubMed ID: 9062112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large scale purification of detergent-soluble P-glycoprotein from Pichia pastoris cells and characterization of nucleotide binding properties of wild-type, Walker A, and Walker B mutant proteins.
    Lerner-Marmarosh N; Gimi K; Urbatsch IL; Gros P; Senior AE
    J Biol Chem; 1999 Dec; 274(49):34711-8. PubMed ID: 10574938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-yield functional expression of human sodium/d-glucose cotransporter1 in Pichia pastoris and characterization of ligand-induced conformational changes as studied by tryptophan fluorescence.
    Tyagi NK; Goyal P; Kumar A; Pandey D; Siess W; Kinne RK
    Biochemistry; 2005 Nov; 44(47):15514-24. PubMed ID: 16300400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Conformationally Gated Model of Methadone and Loperamide Transport by P-Glycoprotein.
    Gibbs ME; Wilt LA; Ledwitch KV; Roberts AG
    J Pharm Sci; 2018 Jul; 107(7):1937-1947. PubMed ID: 29499278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperativity between verapamil and ATP bound to the efflux transporter P-glycoprotein.
    Ledwitch KV; Gibbs ME; Barnes RW; Roberts AG
    Biochem Pharmacol; 2016 Oct; 118():96-108. PubMed ID: 27531061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based alteration of tryptophan residues of the multidrug transporter CmABCB1 to assess substrate binding using fluorescence spectroscopy.
    Inoue Y; Yamaguchi T; Otsuka T; Utsunomiya Y; Pan D; Ogawa H; Kato H
    Protein Sci; 2022 Jun; 31(6):e4331. PubMed ID: 35634783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flurazepam inhibits the P-glycoprotein transport function: an insight to revert multidrug-resistance phenotype.
    Lima SA; Tavares J; Gameiro P; de Castro B; Cordeiro-da-Silva A
    Eur J Pharmacol; 2008 Feb; 581(1-2):30-6. PubMed ID: 18190907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3.
    Kluth M; Stindt J; Dröge C; Linnemann D; Kubitz R; Schmitt L
    J Biol Chem; 2015 Feb; 290(8):4896-4907. PubMed ID: 25533467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate-induced conformational changes in the nucleotide-binding domains of lipid bilayer-associated P-glycoprotein during ATP hydrolysis.
    Zoghbi ME; Mok L; Swartz DJ; Singh A; Fendley GA; Urbatsch IL; Altenberg GA
    J Biol Chem; 2017 Dec; 292(50):20412-20424. PubMed ID: 29018094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions.
    Shukla S; Abel B; Chufan EE; Ambudkar SV
    J Biol Chem; 2017 Apr; 292(17):7066-7076. PubMed ID: 28283574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quazepam and flurazepam: differential pharmacokinetic and pharmacodynamic characteristics.
    Hilbert JM; Battista D
    J Clin Psychiatry; 1991 Sep; 52 Suppl():21-6. PubMed ID: 1680120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols.
    Clay AT; Lu P; Sharom FJ
    Biochemistry; 2015 Nov; 54(43):6586-97. PubMed ID: 26484739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction with membrane mimics of transmembrane fragments 16 and 17 from the human multidrug resistance ABC transporter 1 (hMRP1/ABCC1) and two of their tryptophan variants.
    de Foresta B; Vincent M; Gallay J; Garrigos M
    Biochim Biophys Acta; 2010 Mar; 1798(3):401-14. PubMed ID: 20004175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching.
    Flowers S; Biswas EE; Biswas SB
    Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational and functional characterization of trapped complexes of the P-glycoprotein multidrug transporter.
    Russell PL; Sharom FJ
    Biochem J; 2006 Oct; 399(2):315-23. PubMed ID: 16803457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-mediated tertiary structure changes of reconstituted P-glycoprotein. A tryptophan fluorescence quenching analysis.
    Sonveaux N; Vigano C; Shapiro AB; Ling V; Ruysschaert JM
    J Biol Chem; 1999 Jun; 274(25):17649-54. PubMed ID: 10364203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-Glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study.
    Tyagi NK; Kumar A; Goyal P; Pandey D; Siess W; Kinne RK
    Biochemistry; 2007 Nov; 46(47):13616-28. PubMed ID: 17983207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.