These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 1879217)
1. Suppressive effect of high energy shock waves on tumor cells. Chen CL; Guo ZH; Zhao Y; Yan CY; Pu JX; Chen ZX; Zhang R Chin Med J (Engl); 1991 Jul; 104(7):548-51. PubMed ID: 1879217 [TBL] [Abstract][Full Text] [Related]
2. [The inhibitory effect of high energy shock waves on bladder tumor cell line BIU-87 in vitro]. Guo YL Zhonghua Yi Xue Za Zhi; 1992 Sep; 72(9):522-4, 572. PubMed ID: 1338511 [TBL] [Abstract][Full Text] [Related]
3. [The effect of high energy shock waves on growth and metastasis of implanted tumors of nude mice in vivo]. Guo Y; Zhou L Zhonghua Yi Xue Za Zhi; 1993 Jul; 73(7):420-3, 448. PubMed ID: 8293346 [TBL] [Abstract][Full Text] [Related]
4. In vivo effect of high energy shock waves on growth and metastasis of the heterografted tumors of nude mice. Zhou L; Guo Y Chin Med J (Engl); 1996 Feb; 109(2):157-61. PubMed ID: 8758343 [TBL] [Abstract][Full Text] [Related]
5. Application of high energy shock waves to cancer treatment in combination with cisplatin and ATX-70. Maruyama M; Asano T; Nakagohri T; Uematsu T; Hasegawa M; Miyauchi H; Iwashita C; Isono K Anticancer Res; 1999; 19(3A):1989-93. PubMed ID: 10470144 [TBL] [Abstract][Full Text] [Related]
6. Effects of vitamin D (calcitriol) on transitional cell carcinoma of the bladder in vitro and in vivo. Konety BR; Lavelle JP; Pirtskalaishvili G; Dhir R; Meyers SA; Nguyen TS; Hershberger P; Shurin MR; Johnson CS; Trump DL; Zeidel ML; Getzenberg RH J Urol; 2001 Jan; 165(1):253-8. PubMed ID: 11125420 [TBL] [Abstract][Full Text] [Related]
7. Cytotoxic effects of high energy shock waves on cancer cells linked to metallic beads vehicled by monoclonal antibodies. Ferlazzo G; Scisca C; Iemmo R; Quartarone G; Cicciarello R; Gagliardi ME; Mesiti M J Urol; 1997 Jan; 157(1):366-70. PubMed ID: 8976299 [TBL] [Abstract][Full Text] [Related]
8. Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo. Krutovskikh VA; Troyanovsky SM; Piccoli C; Tsuda H; Asamoto M; Yamasaki H Oncogene; 2000 Jan; 19(4):505-13. PubMed ID: 10698520 [TBL] [Abstract][Full Text] [Related]
9. [Experimental applications of shock waves]. Robles JE; Rosell D Rev Med Univ Navarra; 1996; 40(4):25-33. PubMed ID: 9499832 [TBL] [Abstract][Full Text] [Related]
10. High energy shock waves (HESW) for sonodynamic therapy: effects on HT-29 human colon cancer cells. Canaparo R; Serpe L; Catalano MG; Bosco O; Zara GP; Berta L; Frairia R Anticancer Res; 2006; 26(5A):3337-42. PubMed ID: 17094450 [TBL] [Abstract][Full Text] [Related]
11. Epidermal growth factor receptor-mediated autocrine and paracrine stimulation of human transitional cell carcinoma. Gleave ME; Hsieh JT; Wu HC; Hong SJ; Zhau HE; Guthrie PD; Chung LW Cancer Res; 1993 Nov; 53(21):5300-7. PubMed ID: 8221665 [TBL] [Abstract][Full Text] [Related]
12. Human bladder carcinoma cells with an unusual pattern of in vitro growth: transition from nonproliferative spheroids to active monolayer growth upon interaction with tumor-derived fibroblasts. Chuang CK; Liao SK Anticancer Res; 2000; 20(2A):749-60. PubMed ID: 10810350 [TBL] [Abstract][Full Text] [Related]
13. Canine invasive transitional cell carcinoma cell lines: in vitro tools to complement a relevant animal model of invasive urinary bladder cancer. Dhawan D; Ramos-Vara JA; Stewart JC; Zheng R; Knapp DW Urol Oncol; 2009; 27(3):284-92. PubMed ID: 18562222 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a human, sex steroid-responsive transitional cell carcinoma maintained as a tumor line (R198) in athymic nude mice. Reid LM; Leav I; Kwan PW; Russell P; Merk FB Cancer Res; 1984 Oct; 44(10):4560-73. PubMed ID: 6467211 [TBL] [Abstract][Full Text] [Related]
15. The cytotoxic effect of fleroxacin and ciprofloxacin on transitional cell carcinoma in vitro. Ebisuno S; Inagaki T; Kohjimoto Y; Ohkawa T Cancer; 1997 Dec; 80(12):2263-7. PubMed ID: 9404703 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of cord blood stem cell manipulation with high-energy shock waves: an in vitro and in vivo study. Berger M; Frairia R; Piacibello W; Sanavio F; Palmero A; Venturi C; Pignochino Y; Berta L; Madon E; Aglietta M; Fagioli F Exp Hematol; 2005 Nov; 33(11):1371-87. PubMed ID: 16263422 [TBL] [Abstract][Full Text] [Related]
17. Behavioral profiling of human transitional cell carcinoma ex vivo. Estrada CR; Salanga M; Bielenberg DR; Harrell WB; Zurakowski D; Zhu X; Palmer MR; Freeman MR; Adam RM Cancer Res; 2006 Mar; 66(6):3078-86. PubMed ID: 16540657 [TBL] [Abstract][Full Text] [Related]
18. [In vitro and in vivo evaluation of inhibitory nucleic acid constructs for specific therapy of human urinary bladder carcinoma]. Kunze D; Füssel S; Meye A; Wuttig D; Krämer K; Kotzsch M; Toma M; Schwenzer B; Kausch I; Jocham D; Hakenberg OW; Grimm MO; Wirth MP Urologe A; 2007 Sep; 46(9):1289. PubMed ID: 17665160 [No Abstract] [Full Text] [Related]
20. [Establishment of epithelial cell line TBC-27 from a human bladder transitional cell carcinoma and its biological characteristics]. Liu CJ; Ma TX; Wang ZQ; Chang JW; Liu XB; Sui ZF; Zhang X Zhonghua Zhong Liu Za Zhi; 1987 Nov; 9(6):427-9, 21. PubMed ID: 3452540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]