These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 187926)
1. 4-(3-Cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62711): a potent inhibitor of adenosine cyclic 3',5'-monophosphate phosphodiesterases in homogenates and tissue slices from rat brain. Schwabe U; Miyake M; Ohga Y; Daly JW Mol Pharmacol; 1976 Nov; 12(6):900-10. PubMed ID: 187926 [No Abstract] [Full Text] [Related]
2. Differential inhibitor effects on cyclic adenosine monophosphate-phosphodiesterase isoforms in atopic and normal leukocytes. Chan SC; Hanifin JM J Lab Clin Med; 1993 Jan; 121(1):44-51. PubMed ID: 8381148 [TBL] [Abstract][Full Text] [Related]
3. Mechanism by which psychotropic drugs inhibit adenosine cyclic 3',5'-monophosphate phosphodiesterase of brain. Levin RM; Weiss B Mol Pharmacol; 1976 Jul; 12(4):581-9. PubMed ID: 183095 [No Abstract] [Full Text] [Related]
4. Effects of cyclic AMP- and cyclic GMP- phosphodiesterase inhibitors on immunological release of histamine and on lung contraction. Frossard N; Landry Y; Pauli G; Ruckstuhl M Br J Pharmacol; 1981 Aug; 73(4):933-8. PubMed ID: 6168323 [TBL] [Abstract][Full Text] [Related]
5. Cyclic AMP-specific phosphodiesterase inhibitor rolipram and RO-20-1724 promoted apoptosis in HL60 promyelocytic leukemic cells via cyclic AMP-independent mechanism. Zhu WH; Majluf-Cruz A; Omburo GA Life Sci; 1998; 63(4):265-74. PubMed ID: 9698035 [TBL] [Abstract][Full Text] [Related]
6. Pharmacological inhibition of calmodulin-sensitive phosphodiesterases. Ilien B; Ruckstuhl M; Landry Y J Pharmacol; 1982; 13(2):307-16. PubMed ID: 6285085 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of 3',5'-nucleotide phosphodiesterase and the stimulation of cerebral cyclic AMP formation by biogenic amines in vitro and in vivo. Nahorski SR; Rogers KJ Neuropharmacology; 1976 Oct; 15(10):609-12. PubMed ID: 186725 [No Abstract] [Full Text] [Related]
8. Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents. Marcoz P; Prigent AF; Lagarde M; Nemoz G Mol Pharmacol; 1993 Nov; 44(5):1027-35. PubMed ID: 8246905 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of cyclic adenosine-3',5'-monophosphate phosphodiesterase from vascular smooth muscle by rolipram analogues. Marivet MC; Bourguignon JJ; Lugnier C; Mann A; Stoclet JC; Wermuth CG J Med Chem; 1989 Jul; 32(7):1450-7. PubMed ID: 2544722 [TBL] [Abstract][Full Text] [Related]
10. [Inhibition of rat heart and brain cyclic adenosine-3',5'-monophosphate phosphodiesterase in vitro under the influence of neurohormone C]. Galoian AA; Gurvits BIa; Pogosian MA Biull Eksp Biol Med; 1977 Jun; 83(6):691-3. PubMed ID: 195650 [TBL] [Abstract][Full Text] [Related]
11. Characterization of cyclic AMP phosphodiesterase isozymes in rat parotid gland. Imai A; Nashida T; Shimomura H Arch Oral Biol; 1995 Feb; 40(2):165-8. PubMed ID: 7794130 [TBL] [Abstract][Full Text] [Related]
12. Rat homologs of the Drosophila dunce gene code for cyclic AMP phosphodiesterases sensitive to rolipram and RO 20-1724. Henkel-Tigges J; Davis RL Mol Pharmacol; 1990 Jan; 37(1):7-10. PubMed ID: 2153912 [TBL] [Abstract][Full Text] [Related]
13. Griseolic acid, an inhibitor of cyclic adenosine 3',5'-monophosphate phosphodiesterase. I. Taxonomy, isolation and characterization. Nakagawa F; Okazaki T; Naito A; Iijima Y; Yamazaki M J Antibiot (Tokyo); 1985 Jul; 38(7):824-9. PubMed ID: 2993218 [TBL] [Abstract][Full Text] [Related]
14. Correlation of cell-free brain cyclic nucleotide phosphodiesterase activities to cyclic AMP decay in intact brain slices. Whalin ME; Garrett RL; Thompson WJ; Strada SJ Second Messengers Phosphoproteins; 1988-1989; 12(5-6):311-25. PubMed ID: 2856115 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the effects of phosphodiesterase type 3 and 4 inhibitors in cerebral arteries. Birk S; Edvinsson L; Olesen J; Kruuse C Eur J Pharmacol; 2004 Apr; 489(1-2):93-100. PubMed ID: 15063160 [TBL] [Abstract][Full Text] [Related]
16. Effects of cyclic AMP analogues and phosphodiesterase inhibitors on K+-induced [3H]noradrenaline release from rat brain slices and on its presynaptic alpha-adrenergic modulation. Wemer J; Schoffelmeer AN; Mulder AH J Neurochem; 1982 Aug; 39(2):349-56. PubMed ID: 6283025 [TBL] [Abstract][Full Text] [Related]
17. The effects of alkylated xanthines on cyclic AMP accumulation in dog thyroid slices exposed to carbamylcholine. Miot F; Erneux C; Wells JN; Dumont JE Mol Pharmacol; 1984 Mar; 25(2):261-6. PubMed ID: 6321949 [TBL] [Abstract][Full Text] [Related]
18. Differences and similarities between guanosine 3',5'-cyclic monophosphate phosphodiesterase and adenosine 3',5'-cyclic monophosphate phosphodiesterase activities in neuroblastoma cells in culture. Prasad KN; Becker G; Tripathy K Proc Soc Exp Biol Med; 1975 Jul; 149(3):757-62. PubMed ID: 167381 [TBL] [Abstract][Full Text] [Related]
19. Chronic type IV phosphodiesterase inhibition protects glomerular filtration rate and renal and mesenteric blood flow in a zymosan-induced model of multiple organ dysfunction syndrome treated with norepinephrine. Thomas NJ; Carcillo JA; Herzer WA; Mi Z; Jackson EK J Pharmacol Exp Ther; 2001 Jan; 296(1):168-74. PubMed ID: 11123377 [TBL] [Abstract][Full Text] [Related]
20. Selective inhibitors of specific phosphodiesterases in intact adipocytes. Manganiello V; Degerman E; Elks M Methods Enzymol; 1988; 159():504-20. PubMed ID: 2457789 [No Abstract] [Full Text] [Related] [Next] [New Search]