These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 18793010)

  • 1. Nitrous oxide vibrational energy relaxation is a probe of interfacial water in lipid bilayers.
    Chieffo LR; Shattuck JT; Pinnick E; Amsden JJ; Hong MK; Wang F; Erramilli S; Ziegler LD
    J Phys Chem B; 2008 Oct; 112(40):12776-82. PubMed ID: 18793010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational spectroscopy of water in hydrated lipid multi-bilayers. III. Water clustering and vibrational energy transfer.
    Gruenbaum SM; Skinner JL
    J Chem Phys; 2013 Nov; 139(17):175103. PubMed ID: 24206336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement and revised analysis of the torsional combination band of the nonpolar N2O dimer at 2249 cm(-1).
    Dehghany M; Afshari M; Moazzen-Ahmadi N; McKellar AR
    Phys Chem Chem Phys; 2008 Mar; 10(12):1658-61. PubMed ID: 18338066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural inhomogeneity of interfacial water at lipid monolayers revealed by surface-specific vibrational pump-probe spectroscopy.
    Bonn M; Bakker HJ; Ghosh A; Yamamoto S; Sovago M; Campen RK
    J Am Chem Soc; 2010 Oct; 132(42):14971-8. PubMed ID: 20882964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the distribution of water molecules hydrating lipid membranes with ultrafast Förster vibrational energy transfer.
    Piatkowski L; de Heij J; Bakker HJ
    J Phys Chem B; 2013 Feb; 117(5):1367-77. PubMed ID: 23360328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast energy migration pathways in self-assembled phospholipids interacting with confined water.
    Levinger NE; Costard R; Nibbering ET; Elsaesser T
    J Phys Chem A; 2011 Nov; 115(43):11952-9. PubMed ID: 21928826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientational dynamics of water in phospholipid bilayers with different hydration levels.
    Zhang Z; Berkowitz ML
    J Phys Chem B; 2009 May; 113(21):7676-80. PubMed ID: 19413360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of water at the phospholipid membrane interface.
    Volkov VV; Palmer DJ; Righini R
    J Phys Chem B; 2007 Feb; 111(6):1377-83. PubMed ID: 17249718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of hydrogen bond lifetime dynamics to the presence of ethanol at the interface of a phospholipid bilayer.
    Chanda J; Chakraborty S; Bandyopadhyay S
    J Phys Chem B; 2006 Mar; 110(8):3791-7. PubMed ID: 16494438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast hydration dynamics in the lipidic cubic phase: Discrete water structures in nanochannels.
    Kim J; Lu W; Qiu W; Wang L; Caffrey M; Zhong D
    J Phys Chem B; 2006 Nov; 110(43):21994-2000. PubMed ID: 17064169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of tyrosine in Leu-enkephalin at a membrane-water interface: an ultrafast two-dimensional infrared study combined with density functional calculations and molecular dynamics simulations.
    Sul S; Feng Y; Le U; Tobias DJ; Ge NH
    J Phys Chem B; 2010 Jan; 114(2):1180-90. PubMed ID: 20017523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the low-temperature onset of molecular flexibility in lipid bilayers seen by Raman scattering.
    Surovtsev NV; Salnikov ES; Malinovsky VK; Sveshnikova LL; Dzuba SA
    J Phys Chem B; 2008 Oct; 112(39):12361-5. PubMed ID: 18774854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water at the surfaces of aligned phospholipid multibilayer model membranes probed with ultrafast vibrational spectroscopy.
    Zhao W; Moilanen DE; Fenn EE; Fayer MD
    J Am Chem Soc; 2008 Oct; 130(42):13927-37. PubMed ID: 18823116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond time-resolved and two-dimensional vibrational sum frequency spectroscopic instrumentation to study structural dynamics at interfaces.
    Ghosh A; Smits M; Bredenbeck J; Dijkhuizen N; Bonn M
    Rev Sci Instrum; 2008 Sep; 79(9):093907. PubMed ID: 19044428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational spectroscopy and dynamics of azide ion in ionic liquid and dimethyl sulfoxide water mixtures.
    Sando GM; Dahl K; Owrutsky JC
    J Phys Chem B; 2007 May; 111(18):4901-9. PubMed ID: 17388412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GM1 ganglioside embedded in a hydrated DOPC membrane: a molecular dynamics simulation study.
    Jedlovszky P; Sega M; Vallauri R
    J Phys Chem B; 2009 Apr; 113(14):4876-86. PubMed ID: 19275209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast energy exchange via water-phosphate interactions in hydrated DNA.
    Szyc Ł; Yang M; Elsaesser T
    J Phys Chem B; 2010 Jun; 114(23):7951-7. PubMed ID: 20481569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast energy transfer in water-AOT reverse micelles.
    Cringus D; Bakulin A; Lindner J; Vöhringer P; Pshenichnikov MS; Wiersma DA
    J Phys Chem B; 2007 Dec; 111(51):14193-207. PubMed ID: 18047308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific measurements of lipid membrane interfacial water dynamics with multidimensional infrared spectroscopy.
    Osborne DG; Dunbar JA; Lapping JG; White AM; Kubarych KJ
    J Phys Chem B; 2013 Dec; 117(49):15407-14. PubMed ID: 23931556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational energy relaxation of isotopically labeled amide I modes in cytochrome c: theoretical investigation of vibrational energy relaxation rates and pathways.
    Fujisaki H; Straub JE
    J Phys Chem B; 2007 Oct; 111(41):12017-23. PubMed ID: 17887785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.