These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18793184)

  • 21. Functional importance of Glutamate-445 and Glutamate-99 in proton-coupled electron transfer during oxygen reduction by cytochrome bd from Escherichia coli.
    Murali R; Gennis RB
    Biochim Biophys Acta Bioenerg; 2018 Aug; 1859(8):577-590. PubMed ID: 29719208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytochrome bd confers nitric oxide resistance to Escherichia coli.
    Mason MG; Shepherd M; Nicholls P; Dobbin PS; Dodsworth KS; Poole RK; Cooper CE
    Nat Chem Biol; 2009 Feb; 5(2):94-6. PubMed ID: 19109594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Oxygenated cytochrome bd from Escherichia coli could be transformed into an oxidized form by lipophilic electron acceptors].
    Borisov VB; Smirnova IA; Krasnosel'skaia IA; Konstantinov AA
    Biokhimiia; 1994 Apr; 59(4):598-606. PubMed ID: 8018781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Respiratory mutations lead to different pleiotropic effects on OXPHOS complexes in yeast and in human cells.
    Marsy S; Frachon P; Dujardin G; Lombès A; Lemaire C
    FEBS Lett; 2008 Oct; 582(23-24):3489-93. PubMed ID: 18804471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-stability semiquinone intermediate in nitrate reductase A (NarGHI) from Escherichia coli is located in a quinol oxidation site close to heme bD.
    Lanciano P; Magalon A; Bertrand P; Guigliarelli B; Grimaldi S
    Biochemistry; 2007 May; 46(18):5323-9. PubMed ID: 17439244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein complexes of the Escherichia coli cell envelope.
    Stenberg F; Chovanec P; Maslen SL; Robinson CV; Ilag LL; von Heijne G; Daley DO
    J Biol Chem; 2005 Oct; 280(41):34409-19. PubMed ID: 16079137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic defects in the oxidative phosphorylation (OXPHOS) system.
    Janssen RJ; van den Heuvel LP; Smeitink JA
    Expert Rev Mol Diagn; 2004 Mar; 4(2):143-56. PubMed ID: 14995902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Strategy for survival and adaptation of bacteria by nanoaerobiosis].
    Mogi T
    Tanpakushitsu Kakusan Koso; 2007 Aug; 52(9):974-81. PubMed ID: 17684952
    [No Abstract]   [Full Text] [Related]  

  • 29. Mass spectrometric analysis of the ubiquinol-binding site in cytochrome bd from Escherichia coli.
    Matsumoto Y; Murai M; Fujita D; Sakamoto K; Miyoshi H; Yoshida M; Mogi T
    J Biol Chem; 2006 Jan; 281(4):1905-12. PubMed ID: 16299377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes.
    Dudkina NV; Sunderhaus S; Boekema EJ; Braun HP
    J Bioenerg Biomembr; 2008 Oct; 40(5):419-24. PubMed ID: 18839290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase.
    Bekker M; de Vries S; Ter Beek A; Hellingwerf KJ; de Mattos MJ
    J Bacteriol; 2009 Sep; 191(17):5510-7. PubMed ID: 19542282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress.
    Borisov VB; Forte E; Davletshin A; Mastronicola D; Sarti P; Giuffrè A
    FEBS Lett; 2013 Jul; 587(14):2214-8. PubMed ID: 23727202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quality control of cytoplasmic membrane proteins in Escherichia coli.
    Akiyama Y
    J Biochem; 2009 Oct; 146(4):449-54. PubMed ID: 19454621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A genome-wide shRNA screen for new OxPhos related genes.
    Bayona-Bafaluy MP; Sánchez-Cabo F; Fernández-Silva P; Pérez-Martos A; Enríquez JA
    Mitochondrion; 2011 May; 11(3):467-75. PubMed ID: 21292037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products.
    Borisov VB; Forte E; Giuffrè A; Konstantinov A; Sarti P
    J Inorg Biochem; 2009 Aug; 103(8):1185-7. PubMed ID: 19592112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assembly of a chimeric respiratory chain from bovine heart submitochondrial particles and cytochrome bd terminal oxidase of Escherichia coli.
    Gavrikova EV; Grivennikova VG; Borisov VB; Cecchini G; Vinogradov AD
    FEBS Lett; 2009 Apr; 583(8):1287-91. PubMed ID: 19303413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The long Q-loop of Escherichia coli cytochrome bd oxidase is required for assembly and structural integrity.
    Theßeling A; Burschel S; Wohlwend D; Friedrich T
    FEBS Lett; 2020 May; 594(10):1577-1585. PubMed ID: 32002997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does the cytochrome bd terminal oxidase complex have a "pulsed" form?
    Jünemann S; Rich PR
    Biochem Soc Trans; 1996 Aug; 24(3):400S. PubMed ID: 8878944
    [No Abstract]   [Full Text] [Related]  

  • 39. Heavy breathing: energy conversion by mitochondrial respiratory supercomplexes.
    Schon EA; Dencher NA
    Cell Metab; 2009 Jan; 9(1):1-3. PubMed ID: 19117538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytochrome bd terminal oxidase.
    Jünemann S
    Biochim Biophys Acta; 1997 Aug; 1321(2):107-27. PubMed ID: 9332500
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.