These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18793194)

  • 1. Post-transcriptional regulation of gene expression in response to iron deficiency: co-ordinated metabolic reprogramming by yeast mRNA-binding proteins.
    Vergara SV; Thiele DJ
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1088-90. PubMed ID: 18793194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation.
    Puig S; Askeland E; Thiele DJ
    Cell; 2005 Jan; 120(1):99-110. PubMed ID: 15652485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting mRNA decay and translation inhibition during iron deficiency.
    Ramos-Alonso L; Romero AM; Polaina J; Puig S; Martínez-Pastor MT
    Curr Genet; 2019 Feb; 65(1):139-145. PubMed ID: 30128746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation and Proteasome Recognition of the mRNA-Binding Protein Cth2 Facilitates Yeast Adaptation to Iron Deficiency.
    Romero AM; Martínez-Pastor M; Du G; Solé C; Carlos M; Vergara SV; Sanvisens N; Wohlschlegel JA; Toczyski DP; Posas F; de Nadal E; Martínez-Pastor MT; Thiele DJ; Puig S
    mBio; 2018 Sep; 9(5):. PubMed ID: 30228242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of ARE transcript 3' end processing by the yeast Cth2 mRNA decay factor.
    Prouteau M; Daugeron MC; Séraphin B
    EMBO J; 2008 Nov; 27(22):2966-76. PubMed ID: 18923425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The retrograde response links metabolism with stress responses, chromatin-dependent gene activation, and genome stability in yeast aging.
    Jazwinski SM
    Gene; 2005 Jul; 354():22-7. PubMed ID: 15890475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism.
    van Bakel H; Strengman E; Wijmenga C; Holstege FC
    Physiol Genomics; 2005 Aug; 22(3):356-67. PubMed ID: 15886332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs.
    Castells-Roca L; Mühlenhoff U; Lill R; Herrero E; Bellí G
    Mol Microbiol; 2011 Jul; 81(1):232-48. PubMed ID: 21542867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae.
    Pujol-Carrion N; Belli G; Herrero E; Nogues A; de la Torre-Ruiz MA
    J Cell Sci; 2006 Nov; 119(Pt 21):4554-64. PubMed ID: 17074835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study.
    Pagani MA; Casamayor A; Serrano R; Atrian S; Ariño J
    Mol Microbiol; 2007 Jul; 65(2):521-37. PubMed ID: 17630978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production.
    Seo HY; Chang YJ; Chung YJ; Kim KS
    J Microbiol Biotechnol; 2008 Aug; 18(8):1368-76. PubMed ID: 18756096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential recruitment of the mRNA decay machinery to the iron-regulated protein Cth2 in Saccharomyces cerevisiae.
    Perea-García A; Miró P; Jiménez-Lorenzo R; Martínez-Pastor MT; Puig S
    Biochim Biophys Acta Gene Regul Mech; 2020 Sep; 1863(9):194595. PubMed ID: 32565401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple RNA surveillance pathways limit aberrant expression of iron uptake mRNAs and prevent iron toxicity in S. cerevisiae.
    Lee A; Henras AK; Chanfreau G
    Mol Cell; 2005 Jul; 19(1):39-51. PubMed ID: 15989963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency.
    Ramos-Alonso L; Romero AM; Soler MÀ; Perea-García A; Alepuz P; Puig S; Martínez-Pastor MT
    PLoS Genet; 2018 Jun; 14(6):e1007476. PubMed ID: 29912874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The quest for a message: budding yeast, a model organism to study the control of pre-mRNA splicing.
    Meyer M; Vilardell J
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):60-7. PubMed ID: 19279072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global identification of noncoding RNAs in Saccharomyces cerevisiae by modulating an essential RNA processing pathway.
    Samanta MP; Tongprasit W; Sethi H; Chin CS; Stolc V
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4192-7. PubMed ID: 16537507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae.
    Campbell RN; Leverentz MK; Ryan LA; Reece RJ
    Biochem J; 2008 Sep; 414(2):177-87. PubMed ID: 18687061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae.
    Mouillon JM; Persson BL
    FEMS Yeast Res; 2006 Mar; 6(2):171-6. PubMed ID: 16487340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative feedback regulation of the yeast CTH1 and CTH2 mRNA binding proteins is required for adaptation to iron deficiency and iron supplementation.
    Martínez-Pastor M; Vergara SV; Puig S; Thiele DJ
    Mol Cell Biol; 2013 Jun; 33(11):2178-87. PubMed ID: 23530061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia.
    Auchère F; Santos R; Planamente S; Lesuisse E; Camadro JM
    Hum Mol Genet; 2008 Sep; 17(18):2790-802. PubMed ID: 18562474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.