These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 18793321)

  • 1. Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks.
    Yin HH; Ostlund SB; Balleine BW
    Eur J Neurosci; 2008 Oct; 28(8):1437-48. PubMed ID: 18793321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortico-Basal Ganglia reward network: microcircuitry.
    Sesack SR; Grace AA
    Neuropsychopharmacology; 2010 Jan; 35(1):27-47. PubMed ID: 19675534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized cortico-basal ganglia systems.
    Rusu SI; Pennartz CMA
    Hippocampus; 2020 Jan; 30(1):73-98. PubMed ID: 31617622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward.
    Humphries MD; Prescott TJ
    Prog Neurobiol; 2010 Apr; 90(4):385-417. PubMed ID: 19941931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking.
    Collins AL; Saunders BT
    J Neurosci Res; 2020 Jun; 98(6):1046-1069. PubMed ID: 32056298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergy of Distinct Dopamine Projection Populations in Behavioral Reinforcement.
    Heymann G; Jo YS; Reichard KL; McFarland N; Chavkin C; Palmiter RD; Soden ME; Zweifel LS
    Neuron; 2020 Mar; 105(5):909-920.e5. PubMed ID: 31879163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of mesoaccumbens--pallidal circuitry in novelty-induced behavioral activation.
    Hooks MS; Kalivas PW
    Neuroscience; 1995 Feb; 64(3):587-97. PubMed ID: 7715773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex.
    Ikemoto S
    Brain Res Rev; 2007 Nov; 56(1):27-78. PubMed ID: 17574681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From ventral-medial to dorsal-lateral striatum: neural correlates of reward-guided decision-making.
    Burton AC; Nakamura K; Roesch MR
    Neurobiol Learn Mem; 2015 Jan; 117():51-9. PubMed ID: 24858182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function.
    Parkinson JA; Dalley JW; Cardinal RN; Bamford A; Fehnert B; Lachenal G; Rudarakanchana N; Halkerston KM; Robbins TW; Everitt BJ
    Behav Brain Res; 2002 Dec; 137(1-2):149-63. PubMed ID: 12445721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning and Motivational Processes Contributing to Pavlovian-Instrumental Transfer and Their Neural Bases: Dopamine and Beyond.
    Corbit LH; Balleine BW
    Curr Top Behav Neurosci; 2016; 27():259-89. PubMed ID: 26695169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular substrates of action control in cortico-striatal circuits.
    Shiflett MW; Balleine BW
    Prog Neurobiol; 2011 Sep; 95(1):1-13. PubMed ID: 21704115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticipatory reward signals in ventral striatal neurons of behaving rats.
    Khamassi M; Mulder AB; Tabuchi E; Douchamps V; Wiener SI
    Eur J Neurosci; 2008 Nov; 28(9):1849-66. PubMed ID: 18973599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nucleus accumbens and inhibition in the ventral tegmental area play a causal role in the Kamin blocking effect.
    Aggarwal M; Akamine Y; Liu AW; Wickens JR
    Eur J Neurosci; 2020 Aug; 52(3):3087-3109. PubMed ID: 32250479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticipation of Appetitive Operant Action Induces Sustained Dopamine Release in the Nucleus Accumbens.
    Goedhoop J; Arbab T; Willuhn I
    J Neurosci; 2023 May; 43(21):3922-3932. PubMed ID: 37185100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nucleus accumbens and Pavlovian reward learning.
    Day JJ; Carelli RM
    Neuroscientist; 2007 Apr; 13(2):148-59. PubMed ID: 17404375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reward-motivated learning: mesolimbic activation precedes memory formation.
    Adcock RA; Thangavel A; Whitfield-Gabrieli S; Knutson B; Gabrieli JD
    Neuron; 2006 May; 50(3):507-17. PubMed ID: 16675403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning.
    Puschmann S; Brechmann A; Thiel CM
    Hum Brain Mapp; 2013 Nov; 34(11):2841-51. PubMed ID: 22610479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nucleus accumbens as part of a basal ganglia action selection circuit.
    Nicola SM
    Psychopharmacology (Berl); 2007 Apr; 191(3):521-50. PubMed ID: 16983543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.