These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18793487)

  • 21. An innovative technique to simply fabricate ZrO₂-HA-TiO₂ nanostructured layers.
    Samanipour F; Bayati MR; Golestani-Fard F; Zargar HR; Troczynski T; Mirhabibi AR
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):14-20. PubMed ID: 21514799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pulsed laser deposition of hydroxyapatite thin films on Ti-6Al-4V: effect of heat treatment on structure and properties.
    Dinda GP; Shin J; Mazumder J
    Acta Biomater; 2009 Jun; 5(5):1821-30. PubMed ID: 19269271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyelectrolyte mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure.
    Wang Y; Hassan MS; Gunawan P; Lau R; Wang X; Xu R
    J Colloid Interface Sci; 2009 Nov; 339(1):69-77. PubMed ID: 19660764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity.
    Ma MG
    Int J Nanomedicine; 2012; 7():1781-91. PubMed ID: 22619527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of electron microscopy in the observation of technetium and technetium dioxide nanostructures.
    Silva GW; Poineau F; Ma L; Czerwinski KR
    Inorg Chem; 2008 Dec; 47(24):11738-44. PubMed ID: 19053332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioactivity of novel self-assembled crystalline Nb2O5 microstructures in simulated and human salivas.
    Karlinsey RL; Hara AT; Yi K; Duhn CW
    Biomed Mater; 2006 Mar; 1(1):16-23. PubMed ID: 18458381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis.
    Chaudhry AA; Haque S; Kellici S; Boldrin P; Rehman I; Khalid FA; Darr JA
    Chem Commun (Camb); 2006 Jun; (21):2286-8. PubMed ID: 16718331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functionalization of a nanostructured hydroxyapatite with Cu(II) compounds as a pesticide: in situ transmission electron microscopy and environmental scanning electron microscopy observations of treated Vitis vinifera L. leaves.
    Battiston E; Salvatici MC; Lavacchi A; Gatti A; Di Marco S; Mugnai L
    Pest Manag Sci; 2018 Aug; 74(8):1903-1915. PubMed ID: 29457695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Image deconvolution in spherical aberration-corrected high-resolution transmission electron microscopy.
    Tang CY; Chen JH; Zandbergen HW; Li FH
    Ultramicroscopy; 2006 Apr; 106(6):539-46. PubMed ID: 16545524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of additives in the electrodeposition of nanostructured Eu3+/ZnO films for photoluminescent devices.
    Li GR; Dawa CR; Lu XH; Yu XL; Tong YX
    Langmuir; 2009 Feb; 25(4):2378-84. PubMed ID: 19199740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. "Indirect" high-resolution transmission electron microscopy: aberration measurement and wavefunction reconstruction.
    Kirkland AI; Meyer RR
    Microsc Microanal; 2004 Aug; 10(4):401-13. PubMed ID: 15327700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone.
    Viswanath B; Ravishankar N
    Biomaterials; 2008 Dec; 29(36):4855-63. PubMed ID: 18834629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structure of titanate nanobelts used as seeds for the nucleation of hydroxyapatite at the surface of titanium implants.
    Conforto E; Caillard D; Müller L; Müller FA
    Acta Biomater; 2008 Nov; 4(6):1934-43. PubMed ID: 18585110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair.
    Cui Y; Liu Y; Cui Y; Jing X; Zhang P; Chen X
    Acta Biomater; 2009 Sep; 5(7):2680-92. PubMed ID: 19376759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems.
    Liu J
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):251-78. PubMed ID: 16123072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monodisperse F-substituted hydroxyapatite single-crystal nanotubes with amphiphilic surface properties.
    Hui J; Xiang G; Xu X; Zhuang J; Wang X
    Inorg Chem; 2009 Jul; 48(13):5614-6. PubMed ID: 19476318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron microscopy studies of electron-beam sensitive PbTe-based nanostructures.
    Falqui A; Bertoni G; Genovese A; Marras S; Malerba M; Franchini IR; Manna L
    Microsc Res Tech; 2010 Oct; 73(10):944-51. PubMed ID: 20232366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The surface modification of hydroxyapatite nanoparticles by the ring opening polymerization of gamma-benzyl-l-glutamate N-carboxyanhydride.
    Wei J; Liu A; Chen L; Zhang P; Chen X; Jing X
    Macromol Biosci; 2009 Jul; 9(7):631-8. PubMed ID: 19165825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.