These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 18793651)
1. A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum. Jonas S; van Loo B; Hyvönen M; Hollfelder F J Mol Biol; 2008 Dec; 384(1):120-36. PubMed ID: 18793651 [TBL] [Abstract][Full Text] [Related]
2. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Zalatan JG; Fenn TD; Brunger AT; Herschlag D Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180 [TBL] [Abstract][Full Text] [Related]
3. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. O'Brien PJ; Herschlag D Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834 [TBL] [Abstract][Full Text] [Related]
5. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase. Wiersma-Koch H; Sunden F; Herschlag D Biochemistry; 2013 Dec; 52(51):9167-76. PubMed ID: 24261692 [TBL] [Abstract][Full Text] [Related]
6. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102. Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886 [TBL] [Abstract][Full Text] [Related]
7. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography. Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Lukatela G; Krauss N; Theis K; Selmer T; Gieselmann V; von Figura K; Saenger W Biochemistry; 1998 Mar; 37(11):3654-64. PubMed ID: 9521684 [TBL] [Abstract][Full Text] [Related]
10. Promiscuous sulfatase activity and thio-effects in a phosphodiesterase of the alkaline phosphatase superfamily. Lassila JK; Herschlag D Biochemistry; 2008 Dec; 47(48):12853-9. PubMed ID: 18975918 [TBL] [Abstract][Full Text] [Related]
11. An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily. van Loo B; Jonas S; Babtie AC; Benjdia A; Berteau O; Hyvönen M; Hollfelder F Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2740-5. PubMed ID: 20133613 [TBL] [Abstract][Full Text] [Related]
12. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Stec B; Holtz KM; Kantrowitz ER J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454 [TBL] [Abstract][Full Text] [Related]
13. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily. Hou G; Cui Q J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879 [TBL] [Abstract][Full Text] [Related]
14. Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases. Gijsbers R; Ceulemans H; Stalmans W; Bollen M J Biol Chem; 2001 Jan; 276(2):1361-8. PubMed ID: 11027689 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of the catalytic fragment of human brain 2',3'-cyclic-nucleotide 3'-phosphodiesterase. Sakamoto Y; Tanaka N; Ichimiya T; Kurihara T; Nakamura KT J Mol Biol; 2005 Feb; 346(3):789-800. PubMed ID: 15713463 [TBL] [Abstract][Full Text] [Related]
16. Structural snapshots of the catalytic cycle of the phosphodiesterase Autotaxin. Hausmann J; Keune WJ; Hipgrave Ederveen AL; van Zeijl L; Joosten RP; Perrakis A J Struct Biol; 2016 Aug; 195(2):199-206. PubMed ID: 27268273 [TBL] [Abstract][Full Text] [Related]
17. Examining the promiscuous phosphatase activity of Pseudomonas aeruginosa arylsulfatase: a comparison to analogous phosphatases. Luo J; van Loo B; Kamerlin SC Proteins; 2012 Apr; 80(4):1211-26. PubMed ID: 22275090 [TBL] [Abstract][Full Text] [Related]
18. X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases. Bihani SC; Das A; Nilgiriwala KS; Prashar V; Pirocchi M; Apte SK; Ferrer JL; Hosur MV PLoS One; 2011; 6(7):e22767. PubMed ID: 21829507 [TBL] [Abstract][Full Text] [Related]
19. Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine. Recksiek M; Selmer T; Dierks T; Schmidt B; von Figura K J Biol Chem; 1998 Mar; 273(11):6096-103. PubMed ID: 9497327 [TBL] [Abstract][Full Text] [Related]
20. Residues critical for formylglycine formation and/or catalytic activity of arylsulfatase A. Knaust A; Schmidt B; Dierks T; von Bülow R; von Figura K Biochemistry; 1998 Oct; 37(40):13941-6. PubMed ID: 9760228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]