These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 18793651)
21. Insights into the catalytic mechanism of human sEH phosphatase by site-directed mutagenesis and LC-MS/MS analysis. Cronin A; Homburg S; Dürk H; Richter I; Adamska M; Frère F; Arand M J Mol Biol; 2008 Nov; 383(3):627-40. PubMed ID: 18775727 [TBL] [Abstract][Full Text] [Related]
22. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II. Vogel A; Schilling O; Meyer-Klaucke W Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536 [TBL] [Abstract][Full Text] [Related]
23. Functional and Catalytic Characterization of the Detoxifying Enzyme Haloalkane Dehalogenase from Rhizobium leguminosarum. Georgakis N; Chronopoulou E; Gad MA; Skliros D; Efrose R; Flemetakis E; Labrou NE Protein Pept Lett; 2017; 24(7):599-608. PubMed ID: 28641560 [TBL] [Abstract][Full Text] [Related]
24. Divergence of chemical function in the alkaline phosphatase superfamily: structure and mechanism of the P-C bond cleaving enzyme phosphonoacetate hydrolase. Kim A; Benning MM; OkLee S; Quinn J; Martin BM; Holden HM; Dunaway-Mariano D Biochemistry; 2011 May; 50(17):3481-94. PubMed ID: 21366328 [TBL] [Abstract][Full Text] [Related]
25. Crystal structure of an enzyme-substrate complex provides insight into the interaction between human arylsulfatase A and its substrates during catalysis. von Bülow R; Schmidt B; Dierks T; von Figura K; Usón I J Mol Biol; 2001 Jan; 305(2):269-77. PubMed ID: 11124905 [TBL] [Abstract][Full Text] [Related]
26. Crystal structure of glycerophosphodiester phosphodiesterase (GDPD) from Thermoanaerobacter tengcongensis, a metal ion-dependent enzyme: insight into the catalytic mechanism. Shi L; Liu JF; An XM; Liang DC Proteins; 2008 Jul; 72(1):280-8. PubMed ID: 18214974 [TBL] [Abstract][Full Text] [Related]
27. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily. Sunden F; AlSadhan I; Lyubimov AY; Ressl S; Wiersma-Koch H; Borland J; Brown CL; Johnson TA; Singh Z; Herschlag D J Am Chem Soc; 2016 Nov; 138(43):14273-14287. PubMed ID: 27670607 [TBL] [Abstract][Full Text] [Related]
28. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. Dierks T; Miech C; Hummerjohann J; Schmidt B; Kertesz MA; von Figura K J Biol Chem; 1998 Oct; 273(40):25560-4. PubMed ID: 9748219 [TBL] [Abstract][Full Text] [Related]
29. Human placental alkaline phosphatase-mediated hydrolysis correlates tightly with the electrostatic contribution from tail group. Yang Y; Wang K; Li W; Adelstein SJ; Kassis AI Chem Biol Drug Des; 2011 Dec; 78(6):923-31. PubMed ID: 21910833 [TBL] [Abstract][Full Text] [Related]
30. The crystal structure of human tyrosyl-DNA phosphodiesterase, Tdp1. Davies DR; Interthal H; Champoux JJ; Hol WG Structure; 2002 Feb; 10(2):237-48. PubMed ID: 11839309 [TBL] [Abstract][Full Text] [Related]
31. Three-dimensional structures of sulfatases. Ghosh D Methods Enzymol; 2005; 400():273-93. PubMed ID: 16399355 [TBL] [Abstract][Full Text] [Related]
32. Expression cloning and biochemical characterization of a Rhizobium leguminosarum lipid A 1-phosphatase. Karbarz MJ; Kalb SR; Cotter RJ; Raetz CR J Biol Chem; 2003 Oct; 278(41):39269-79. PubMed ID: 12869541 [TBL] [Abstract][Full Text] [Related]
33. Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Peng J; Schmidt B; von Figura K; Dierks T J Mass Spectrom; 2003 Jan; 38(1):80-6. PubMed ID: 12526009 [TBL] [Abstract][Full Text] [Related]
34. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation. Hehir MJ; Murphy JE; Kantrowitz ER J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386 [TBL] [Abstract][Full Text] [Related]
35. Structure and kinetics of phosphonopyruvate hydrolase from Variovorax sp. Pal2: new insight into the divergence of catalysis within the PEP mutase/isocitrate lyase superfamily. Chen CC; Han Y; Niu W; Kulakova AN; Howard A; Quinn JP; Dunaway-Mariano D; Herzberg O Biochemistry; 2006 Sep; 45(38):11491-504. PubMed ID: 16981709 [TBL] [Abstract][Full Text] [Related]
36. Structure and mechanism of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway. He SM; Wathier M; Podzelinska K; Wong M; McSorley FR; Asfaw A; Hove-Jensen B; Jia Z; Zechel DL Biochemistry; 2011 Oct; 50(40):8603-15. PubMed ID: 21830807 [TBL] [Abstract][Full Text] [Related]
37. Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes. Galperin MY; Jedrzejas MJ Proteins; 2001 Dec; 45(4):318-24. PubMed ID: 11746679 [TBL] [Abstract][Full Text] [Related]
38. Catalytic activity of human placental alkaline phosphatase (PLAP): insights from a computational study. Borosky GL J Phys Chem B; 2014 Dec; 118(49):14302-13. PubMed ID: 25409280 [TBL] [Abstract][Full Text] [Related]
39. Structural and biochemical characterization of a novel Mn2+-dependent phosphodiesterase encoded by the yfcE gene. Miller DJ; Shuvalova L; Evdokimova E; Savchenko A; Yakunin AF; Anderson WF Protein Sci; 2007 Jul; 16(7):1338-48. PubMed ID: 17586769 [TBL] [Abstract][Full Text] [Related]
40. Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation. Podzelinska K; He SM; Wathier M; Yakunin A; Proudfoot M; Hove-Jensen B; Zechel DL; Jia Z J Biol Chem; 2009 Jun; 284(25):17216-17226. PubMed ID: 19366688 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]